Synthesis of Polysaccharides I: Hydrolase as Catalyst

  • Shin-ichiro ShodaEmail author
  • Masato Noguchi
  • Gefei Li
  • Shunsaku KimuraEmail author
Part of the Green Chemistry and Sustainable Technology book series (GCST)


The glycoside hydrolase-catalyzed polycondensation of activated glycosyl monomers such as glycosyl fluorides and polyaddition of sugar-oxazoline monomers have been reviewed. Various kinds of oligo- and polysaccharides including natural cellulose, xylan, chitin, hyaluronic acid, and specifically modified functional polysaccharides have successfully been prepared by this methodology. Based on the formation of metastable cellulose I by the enzymatic polymerization of β-cellobiosyl fluoride monomer catalyzed by cellulase, a new concept of “choroselective polymerization” for the control in high-order molecular assembly during polymerization was proposed.

The use of sugar oxazolines as a glycosyl monomer with a distorted conformation allowed the polymerization to proceed only in the direction of the product polysaccharides while suppressing hydrolysis. Sugar oxazolines which possess higher potential energy compared with the conventional glycosyl donors enabled us to produce various N-acetylglucosamine-containing polysaccharides such as chitin, hyaluronic acid, and chondroitin. A new concept of “transition state analogue substrate” (TSAS) has been introduced to polymerization chemistry.


Glycoside hydrolase Functional polysaccharide synthetic cellulose Choroselective polymerization Glycosyl fluoride monomer Artificial chitin Sugar-oxazoline monomer Transition state analogue substrate (TSAS) 


  1. 1.
    Trianabos AO (2000) Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function. Clin Microbiol Rev 13:523–533CrossRefGoogle Scholar
  2. 2.
    Kobayashi S (2007) New developments of polysaccharide synthesis via enzymatic polymerization. Proc Jpn Acad Ser B Phys Biol Sci 83:215–247PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Xiao R, Grinstaff MW (2017) Chemical synthesis of polysaccharides and polysaccharide mimetics. Prog Polym Sci.
  4. 4.
    Taniguchi N, Honke K, Fukuda M (eds) (2002) Handbook of glycosyltransferases and related genes. Springer, TokyoGoogle Scholar
  5. 5.
    Kittl R, Withers SG (2010) New approaches to enzymatic glycoside synthesis through directed evolution. Carbohydr Res 345:1272–1279PubMedCrossRefGoogle Scholar
  6. 6.
    Kobayashi S, Makino A (2009) Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem Rev 109:5288–5353PubMedCrossRefGoogle Scholar
  7. 7.
    Shoda S, Kobayashi A, Kobayashi S (2015) Production of polymers by white biotechnology. In: Coelho MAZ, Ribeiro BD (eds) White biotechnology for sustainable chemistry. Royal Society of Chemistry, Cambridge, pp 274–309CrossRefGoogle Scholar
  8. 8.
    Rye CS, Withers SG (2000) Glycosidase mechanisms. Curr Opin Chem Biol 4:573–580PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Kerr AK (1995) CRC handbook of chemistry and physics. CRC, Boca RatonGoogle Scholar
  10. 10.
    Barnett JEG, Jarvis WTS, Munday KA (1967) The hydrolysis of glycosyl fluorides by glycosidases. Biochem J 105:669–672PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Hehre EJ, Brewer CF, Genghof DS (1979) Scope and mechanism of carbohydrase action – hydrolytic and non-hydrolytic actions of β-amylase on α-maltosyl and β-maltosyl fluoride. J Biol Chem 254:5942–5950PubMedPubMedCentralGoogle Scholar
  12. 12.
    Yokoyama M (2000) Methods of synthesis of glycosyl fluorides. Carbohydr Res 327:5–14PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Tanaka T, Noguchi M, Watanabe K, Misawa T, Ishihara M, Kobayashi A, Shoda S (2010) Novel dialoxytriazine-type glycosyl donors for cellulase-catalysed lactosylation. Org Biomol Chem 8:5126–5132PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Koshland DE (1953) Stereochemistry and the mechanism of enzymatic reactions. Biol Rev 28:416–436CrossRefGoogle Scholar
  15. 15.
    Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Shoda S (2001) Enzymatic glycosylation. In: Fraser-Reid BO, Tatsuta K, Thiem J (eds) Glycoscience chemistry and chemical biology, vol II. Springer, Heidelberg, pp 1465–1496Google Scholar
  17. 17.
    Shoda S, Uyama H, Kadogawa J, Kimura S, Kobayashi S (2016) Enzymes as green catalysts for precision macromolecular synthesis. Chem Rev 116:2307–2413PubMedCrossRefGoogle Scholar
  18. 18.
    Kobayashi S, Shoda S (1996) Enzymatic synthesis of polysaccharides: a new concept in polymerization chemistry. In: Kamachi M, Nakamura A (eds) New macromolecular architecture and functions. Springer, Heidelberg, pp 171–180CrossRefGoogle Scholar
  19. 19.
    Shoda S, Shintate K, Ishihara M, Noguchi M, Kobayashi A (2007) Colorimetric assay for evaluating glycosyl fluoride-hydrolyzing activity of glycosidase by using alizarin complexon reagent. Chem Lett 36:16–17CrossRefGoogle Scholar
  20. 20.
    Danby PM, Withers SG (2016) Advances in enzymatic glycoside synthesis. ACS Chem Biol 11:1784–1794PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Hancock SM, Vauhgan MD, Withers SG (2006) Engineering of glycosidases and glycosyltransferases. Curr Opin Chem Biol 10:509–519PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    MacKenzie LF, Wang QP, Warren RAJ, Withers SG (1998) Glycosynthases: mutant glycosidases for oligosaccharide synthesis. J Am Chem Soc 120:5583–5584CrossRefGoogle Scholar
  23. 23.
    Kobayashi S (2005) Challenge of synthetic cellulose. J Polym Sci Part A: Polym Chem 43:693–710CrossRefGoogle Scholar
  24. 24.
    Kobayashi S, Shoda S, Donnelly M, Church SP (1999) Enzymatic synthesis of cellulose. In: Bucke C (ed) Carbohydrate biotechnology protocols, Methods in biotechnology, vol 10. Humana Press, Totowa, pp 57–69CrossRefGoogle Scholar
  25. 25.
    Kobayashi S, Kashiwa K, Kawasaki T, Shoda S (1991) Novel method for polysaccharide synthesis using an enzyme – the 1st in vitro synthesis of cellulose via a nonbiosyntehtic path utilizing cellulase as catalyst. J Am Chem Soc 113:3079–3084CrossRefGoogle Scholar
  26. 26.
    Kobayashi S, Shoda S (1995) Chemical synthesis of cellulose and cello-oligomers using a hydrolysis enzyme as a catalyst. Int J Biol Macromol 17:373–379PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Fort S, Boyer V, Greffe L et al (2000) Highly efficient synthesis of β(1→4)-oligo- and -polysaccharides using a mutant Cellulase. J Am Chem Soc 122:5429–5437Google Scholar
  28. 28.
    Noguchi M, Tanaka T, Ishihara M, et al (2007) Synthesis of artificial cellulose from novel activated glycosides catalyzed by cellulase and related enzymes. In: Abstracts of the 2nd International Cellulose Conference, Tokyo, 22–25 October 2007Google Scholar
  29. 29.
    Egusa S, Kitaoka T, Goto M, Wariishi H (2007) Synthesis of cellulose in vitro by using a cellulase/surfactant complex in a nonaqueous medium. Angew Chem Int Ed 46:2063–2065CrossRefGoogle Scholar
  30. 30.
    Egusa S, Goto M, Kitaoka T (2012) One-step synthesis of cellulose from cellobiose via protic acid-assisted enzymatic dehydration in aprotic organic media. Biomacrocolecules 13:2716–2722CrossRefGoogle Scholar
  31. 31.
    Faijes M, Imai T, Bulone V, Planas A (2004) In vitro synthesis of a crystalline (1→3,1→4)-β-D-glucan by a mutated (1→3,1→4)-β-D-glucanase from bacillus. Biochem J 380:635–641PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Saxena IM, Brown RM, Fevre M et al (1995) Multidomain architecture of β-glycosyl transferases – implications for mechanism of action. J Bacteriol 177:1419–1424PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kadokawa J (2011) Precision polysaccharide synthesis catalyzed by enzymes. Chem Rev 111:4308–4345PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Kobayashi S, Shoda S, Lee J et al (1994) Direct visualization of synthetic cellulose formation via enzymatic polymerization using transmission electron-microscopy. Macromol Chem Phys 195:1319–1326CrossRefGoogle Scholar
  35. 35.
    Lee JH, Brown RM, Kuga S, Shoda S, Kobayashi S (1994) Assembly of synthetic cellulose-I. Proc Natl Acad Sci U S A 91:7425–7429PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Kobayashi S, Hobson LJ, Sakamoto J et al (2000) Formation and structure of artificial cellulose spherulites via enzymatic polymerization. Biomacromolecules 1:168–173PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Kobayashi S, Shoda S, Wen X et al (1997) Choroselective enzymatic polymerization for synthesis of natural polysaccharides. J Macromol Sci, Part A: Pure Appl Chem 34:2135–2142CrossRefGoogle Scholar
  38. 38.
    Hashimoto T, Tanaka H, Koizumi S et al (2006) Chemical reaction at specific sites and reaction-induced self-assembly as observed by in situ and real time SANS: enzymatic polymerization to synthetic cellulose. Biomacromolecules 7:2479–2482PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Tanaka H, Koizumi S, Hashimoto T et al (2007) Self-assembly of synthetic cellulose during in-vitro enzymatic polymerization process as studied by a combined small-angle scattering method. Macromolecules 40:6304–6315CrossRefGoogle Scholar
  40. 40.
    Nakamura I, Yoneda H, Maeda T et al (2005) Enzymatic polymerization behavior using cellulose-binding domain deficient endoglucanase II. Macromol Biosci 5:623–628PubMedCrossRefGoogle Scholar
  41. 41.
    Nakamura I, Makino A, Sugiyama J et al (2008) Enzymatic activities of novel mutant endoglucanases carrying sequential active sites. Int J Biol Macromol 43:226–231PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Nakamura I, Makino A, Horikawa Y et al (2011) Preparation of fibrous cellulose by enzymatic polymerization using cross-linked mutant endoglucanase II. Chem Commun 47:10127–10129CrossRefGoogle Scholar
  43. 43.
    Hochuli E, Döbeli H, Schacher A (1987) New metal chelate adsorbent selective for proteins and peptides containing neighboring histidine residues. J Chromatogr A 411:177–184CrossRefGoogle Scholar
  44. 44.
    Nakamura I, Makino A, Ohmae M, Kimura S (2010) Immobilization of his-tagged endoglucanase on gold via various Ni-NTA self-assembled monolayers and its hydrolytic activity. Macromol Biosci 10:1265–1272PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Nakamura I, Horikawa Y, Makino A et al (2011) Enzymatic polymerization catalyzed by immobilized endoglucanase on gold. Biomacromolecules 12:785–790PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Nakamura I, Makino A, Ohmae M, Kimura S (2012) Enzymatic polymerization to cellulose by crosslinked enzyme immobilized on gold solid surface. Chem Lett 41:37–38CrossRefGoogle Scholar
  47. 47.
    Kobayashi S, Wen X, Shoda S (1996) Specific preparation of artificial xylan: a new approach to polysaccharide synthesis by using cellulase as catalyst. Macromolecules 29:2698–2700CrossRefGoogle Scholar
  48. 48.
    Croon I, Timell TE (1960) Distribution of substitution in a partially methylated xylan. J Am Chem Soc 82:3416–3418CrossRefGoogle Scholar
  49. 49.
    Moreau V, Driguez H (1996) Enzymic synthesis of hemithiocellodextrins. J Chem Soc, Perkin Trans 1(6):525–527CrossRefGoogle Scholar
  50. 50.
    Shoda S, Okamoto E, Kiyosada T et al (1994) Synthesis of 6- and/or 6′-O-methylated cellobiosyl fluorides: new monomers for enzymatic polymerization. Macromol Rapid Commun 15:751–756CrossRefGoogle Scholar
  51. 51.
    Okamoto E, Kiyosada T, Shoda S et al (1997) Synthesis of alternatingly 6-O-methylated cellulose via enzymatic polymerization of a substituted cellobiosyl fluoride monomer catalyzed by cellulase. Cellulose 4:161–172CrossRefGoogle Scholar
  52. 52.
    Izumi R et al (2009) Synthesis of artificial oligosaccharides by polycondensation of 2′-O-methyl cellobiosyl fluoride and mannosyl-glucosyl fluoride catalyzed by cellulase. In: Kadokawa J (ed) Interfacial researches in fundamental and material sciences of oligo- and polysaccharides. Transworld Research Network, Trivandrum, pp 45–67Google Scholar
  53. 53.
    Kobayashi S, Sakamoto J, Kimura S (2001) In vitro synthesis of cellulose and related polysaccharides. Prog Polym Sci 26:1525–1560CrossRefGoogle Scholar
  54. 54.
    Ohmae M, Makino A, Kobayashi S (2007) Enzymatic polymerization to unnatural hybrid polysaccharides. Macromol Chem Phys 208:1447–1457CrossRefGoogle Scholar
  55. 55.
    Kobayashi S, Makino A, Matsumoto H et al (2006) Enzymatic polymerization to novel polysaccharides having a glucose-N-acetylglucosamine repeating unit, a cellulose-chitin hybrid polysaccharide. Biomacromolecules 7:1644–1656PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Saura-Valls M, Fauré R, Ragàs S et al (2006) Kinetic analysis using low-molecular mass xyloglucan oligosaccharides defines the catalytic mechanism of a populus xyloglucan endotransglycosylase. Biochem J 395:99–106PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Tanaka T, Noguchi M, Ishihara M et al (2010) Synthesis of non-natural xyloglucans by polycondensation of 4,6- dimethoxy-1,3,5-triazin-2-yl oligosaccharide monomers catalyzed by endo-β-1,4-glucanase. Macromol Symp 297:200–209CrossRefGoogle Scholar
  58. 58.
    Fujita M, Shoda S, Kobayashi S (1998) Xylanase-catalyzed synthesis of a novel polysaccharide having a glucose-xylose repeating unit, a cellulose-xylan hybrid polymer. J Am Chem Soc 120:6411–6412CrossRefGoogle Scholar
  59. 59.
    McIntosh M, Stone BA, Stanisich VA (2005) Curdlan and other bacterial (1→3)-β-D-glucans. App Microbiol Biotechnol 68:163–173CrossRefGoogle Scholar
  60. 60.
    Viladot JL, Moreau V, Planas A, Driguez H (1997) Transglycosylation activity of bacillus 1,3-1,4-β-D-glucan 4-glucanohydrolases. Enzymic synthesis of alternate 1,3-1,4-β-D-glucooligosaccharides. J Chem Soc, Perkin Trans 1:2383–2387CrossRefGoogle Scholar
  61. 61.
    Hrmova M, Imai T, Rutten SJ et al (2002) Mutated barley (1,3)-β-D-glucan endohydrolases synthesize crystalline (1,3)-β-D-glucans. J Biol Chem 277:30102–30111PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Kobayashi S, Shimada J, Kashiwa K, Shoda S (1992) Enzymatic Polymerization of α-D-Maltosyl Fluoride Utilizing α-Amylase as the Catalyst - A New Approach for the Synthesis of Maltooligosaccharides. Macromolecules 25:3237–3241CrossRefGoogle Scholar
  63. 63.
    Tews I, van Scheltinga ACT, Perrakis A et al (1997) Substrate-assisted catalysis unifies two families of chitinolytic enzymes. J Am Chem Soc 119:7954–7959CrossRefGoogle Scholar
  64. 64.
    Wiwat C, Siwayaprahm P, Bhumiratana A (1999) Purification and characterization of chitinase from bacillus circulans No. 4.1. Curr Microbiol 39:134–140PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Kobayashi S, Kiyosada T, Shoda S (1996) Synthesis of artificial chitin: irreversible catalytic behavior of a glycosyl hydrolase through a transition state analogue substrate. J Am Chem Soc 118:13113–13114CrossRefGoogle Scholar
  66. 66.
    Merz RA, Horsch M, Nyhlen LE et al (1999) Biochemistry of chitin synthase. In: Jolles P, Muzzarelli RAA (eds) Chitin and chitinase. Birkhauser Verlag, Basel, pp 9–37CrossRefGoogle Scholar
  67. 67.
    Kiyosada T, Takada E, Shoda S et al (1995) Hydrolysis and polymerization of novel monomers containing amino sugar. Polym Prepr Jpn 44:660Google Scholar
  68. 68.
    Kiyosada T, Shoda S, Kobayashi S (1995) Synthesis of Artificial Chitin by Enzymatic Ring-Opening Polyaddition. Polym Prepr Jpn 44:1230–1231Google Scholar
  69. 69.
    Sato H, Mizutani S, Tsuge S et al (1998) Determination of the degree of acetylation of chitin/chitosan by pyrolysis gas chromatography in the presence of oxalic acid. Anal Chem 70:7–12PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Sakamoto J, Sugiyama J, Kimura S et al (2000) Artificial chitin spherulites composed of single crystalline ribbons of α-chitin via enzymatic polymerization. Macromolecules 33:4155–4160CrossRefGoogle Scholar
  71. 71.
    Noguchi M, Tanaka T, Gyakushi H et al (2009) Efficient synthesis of sugar oxazolines from unprotected N-acetyl-2-amino sugars by using chloroformamidinium reagent in water. J Org Chem 74:2210–2212PubMedCrossRefGoogle Scholar
  72. 72.
    Noguchi M, Fujieda T, Huang WC et al (2012) A practical one-step synthesis of 1,2-oxazoline derivatives from unprotected sugars and its application to chemoenzymatic β-N-acetylglucosaminidation of disialo-oligosaccharide. Helv Chim Acta 95:1928–1936CrossRefGoogle Scholar
  73. 73.
    Yoshida N, Tanaka T, Noguchi M et al (2012) One-pot chemoenzymatic route to chitoheptaose via specific transglycosylation of chitopentaose-oxazoline on chitinase-template. Chem Lett 41:689–690CrossRefGoogle Scholar
  74. 74.
    Shoda S, Fujita M, Lohavisavapanichi C et al (2002) Efficient method for the elongation of the N-acetylglucosamine unit by combined use of chitinase and β-galactosidase. Helv Chim Acta 85:3919–3936CrossRefGoogle Scholar
  75. 75.
    Kohri M, Kobayashi A, Noguchi M et al (2006) Stepwise synthesis of chitooligosaccharides through a transition-state analogue substrate catalyzed by mutants of chitinase A1 from bacillus circulans WL-12. Holzforschung 60:485–491CrossRefGoogle Scholar
  76. 76.
    Shoda S, Misawa Y, Nishijima Y et al (2006) Chemo-enzymatic synthesis of novel oligo-N-acetyllactosamine derivatives having a β(1-4)–β(1-6) repeating unit by using transition state analogue substrate. Cellulose 13:477–484CrossRefGoogle Scholar
  77. 77.
    Kobayashi S, Makino A, Tachibana N et al (2006) Chitinase-catalyzed synthesis of a chitin-xylan hybrid polymer: a novel water-soluble β(1→4) polysaccharide having an N-acetylglucosamine-xylose repeating unit. Macromol Rapid Commun 27:781–786CrossRefGoogle Scholar
  78. 78.
    Makino A, Kurosaki K, Ohmae M et al (2006) Chitinase-catalyzed synthesis of alternatingly N-deacetylated chitin: a chitin-chitosan hybrid polysaccharide. Biomacromolecules 7:950–957PubMedCrossRefGoogle Scholar
  79. 79.
    Sakamoto J, Kobayashi S (2004) Enzymatic synthesis of 3-O-methylated chitin oligomers from new derivatives of a chitobiose oxazoline. Chem Lett 33:698–699CrossRefGoogle Scholar
  80. 80.
    Ochiai H, Ohmae M, Kobayashi S (2004) Enzymatic glycosidation of sugar oxazolines having a carboxylate group catalyzed by chitinase. Carbohydr Res 339:2769–2788PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Ochiai H, Ohmae M, Kobayashi S (2004) Enzymatic synthesis of alternatingly 6-O-carboxymethylated chitotetraose by selective glycosidation with chitinase catalysis. Chem Lett 33:694–695CrossRefGoogle Scholar
  82. 82.
    Makino A, Ohmae M, Kobayashi S (2006) Synthesis of fluorinated chitin derivatives via enzymatic polymerization. Macromol Biosci 6:862–872PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Makino A, Sakamoto J, Ohmae M et al (2006) Effect of fluorine substituent on the chitinase-catalyzed polymerization of sugar oxazoline derivatives. Chem Lett 35:160–161CrossRefGoogle Scholar
  84. 84.
    Makino A, Nagashima H, Ohmae M et al (2007) Chitinase-catalyzed synthesis of an alternatingly N-sulfonated chitin derivative. Biomacromolecules 8:188–195PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Makino A, Ohmae M, Kobayashi S (2006) Chitinase-catalyzed copolymerization to a chitin derivative having glucosamine unit in controlled proportion. Polym J 38:1182–1188CrossRefGoogle Scholar
  86. 86.
    Stern R, Jedrzejas MJ (2006) Hyaluronidases: their genomics, structures, and mechanisms of action. Chem Rev 106:818–839PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    El-Safory NS, Fazary AE, Lee CK (2010) Hyaluronidases, a group of glycosidases: current and future perspectives. Carbohydr Polym 81:165–181CrossRefGoogle Scholar
  88. 88.
    Kobayashi S, Morii H, Itoh R et al (2001) Enzymatic polymerization to atificial hyaluronan: a novel method to synthesize a glycosaminoglycan using a transition state analogue monomer. J Am Chem Soc 123:11825–11826PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Kogan G, Šoltés L, Stern R et al (2007) Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett 29:17–25PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Kobayashi S, Fujikawa S, Ohmae M (2003) Enzymatic synthesis of chondroitin and its derivatives catalyzed by hyaluronidase. J Am Chem Soc 125:14357–14369PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Baeurle SA, kiselev MG, Makarova ES et al (2009) Effect of the counterion behavior on the frictional–compressive properties of chondroitin sulfate solutions. Polymer 50:1805–1813CrossRefGoogle Scholar
  92. 92.
    Fujikawa S, Ohmae M, Kobayashi S (2005) Enzymatic synthesis of chondroitin 4-sulfate with well-defined structure. Biomacromolecules 6:2935–2942PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Kobayashi S, Ohmae M, Ochiai H (2006) A hyaluronidase supercatalyst for the enzymatic polymerization to synthesize glycosaminoglycans. Chem Eur J 12:5962–5971PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Ochiai H, Fujikawa S, Ohmae M (2007) Enzymatic copolymerization to hybrid glycosaminoglycans: a novel strategy for intramolecular hybridization of polysaccharides. Biomacromolecules 8:1802–1806PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Yamagishi K, Suzuki K, Imai K et al (2003) Purification, characterization, and molecular cloning of a novel keratan sulfate hydrolase, endo-β-N-acetylglucosaminidase, from bacillus circulans. J Biol Chem 278:25766–25772PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Kariya Y, Watabe S, Mochizuki H et al (2003) Modification of di- and tetrasaccharides from shark cartilage keratan sulphate by refined anhydromethanolic hydrochloric acid-treatments and evaluation of their specific desulphation. Carbohydr Res 338:1133–1138PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Pomin VH (2015) Keratan sulfate: an up-to-date review. Int J Biol Macromol 72:282–289PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Ohmae M, Sakaguchi K, Kaneto T et al (2007) Keratanase II-catalyzed synthesis of keratan sulfate oligomers by using sugar oxazolines as transition-state analogue substrate monomers: a novel insight into the enzymatic catalysis mechanism. ChemBioChem 8:1710–1720PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Yamazaki Y, Kimura S, Ohmae M (2018) Reaction specificity of keratanase II in the transglycosylation using the sugar oxazolines having keratan sulfate repeating units. Carbohydr Res 456:61–68PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Biomolecular EngineeringTohoku UniversityAoba-ku, SendaiJapan
  2. 2.Department of Material ChemistryKyoto UniversityNishikyo-ku, KyotoJapan

Personalised recommendations