Skip to main content

Synthesis of Polysaccharides I: Hydrolase as Catalyst

  • Chapter
  • First Online:
Enzymatic Polymerization towards Green Polymer Chemistry

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

The glycoside hydrolase-catalyzed polycondensation of activated glycosyl monomers such as glycosyl fluorides and polyaddition of sugar-oxazoline monomers have been reviewed. Various kinds of oligo- and polysaccharides including natural cellulose, xylan, chitin, hyaluronic acid, and specifically modified functional polysaccharides have successfully been prepared by this methodology. Based on the formation of metastable cellulose I by the enzymatic polymerization of β-cellobiosyl fluoride monomer catalyzed by cellulase, a new concept of “choroselective polymerization” for the control in high-order molecular assembly during polymerization was proposed.

The use of sugar oxazolines as a glycosyl monomer with a distorted conformation allowed the polymerization to proceed only in the direction of the product polysaccharides while suppressing hydrolysis. Sugar oxazolines which possess higher potential energy compared with the conventional glycosyl donors enabled us to produce various N-acetylglucosamine-containing polysaccharides such as chitin, hyaluronic acid, and chondroitin. A new concept of “transition state analogue substrate” (TSAS) has been introduced to polymerization chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trianabos AO (2000) Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function. Clin Microbiol Rev 13:523–533

    Article  Google Scholar 

  2. Kobayashi S (2007) New developments of polysaccharide synthesis via enzymatic polymerization. Proc Jpn Acad Ser B Phys Biol Sci 83:215–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xiao R, Grinstaff MW (2017) Chemical synthesis of polysaccharides and polysaccharide mimetics. Prog Polym Sci. https://doi.org/10.1016/j.progpolymsci.2017.07.009

  4. Taniguchi N, Honke K, Fukuda M (eds) (2002) Handbook of glycosyltransferases and related genes. Springer, Tokyo

    Google Scholar 

  5. Kittl R, Withers SG (2010) New approaches to enzymatic glycoside synthesis through directed evolution. Carbohydr Res 345:1272–1279

    Article  CAS  PubMed  Google Scholar 

  6. Kobayashi S, Makino A (2009) Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem Rev 109:5288–5353

    Article  CAS  PubMed  Google Scholar 

  7. Shoda S, Kobayashi A, Kobayashi S (2015) Production of polymers by white biotechnology. In: Coelho MAZ, Ribeiro BD (eds) White biotechnology for sustainable chemistry. Royal Society of Chemistry, Cambridge, pp 274–309

    Chapter  Google Scholar 

  8. Rye CS, Withers SG (2000) Glycosidase mechanisms. Curr Opin Chem Biol 4:573–580

    Article  CAS  PubMed  Google Scholar 

  9. Kerr AK (1995) CRC handbook of chemistry and physics. CRC, Boca Raton

    Google Scholar 

  10. Barnett JEG, Jarvis WTS, Munday KA (1967) The hydrolysis of glycosyl fluorides by glycosidases. Biochem J 105:669–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hehre EJ, Brewer CF, Genghof DS (1979) Scope and mechanism of carbohydrase action – hydrolytic and non-hydrolytic actions of β-amylase on α-maltosyl and β-maltosyl fluoride. J Biol Chem 254:5942–5950

    CAS  PubMed  Google Scholar 

  12. Yokoyama M (2000) Methods of synthesis of glycosyl fluorides. Carbohydr Res 327:5–14

    Article  CAS  PubMed  Google Scholar 

  13. Tanaka T, Noguchi M, Watanabe K, Misawa T, Ishihara M, Kobayashi A, Shoda S (2010) Novel dialoxytriazine-type glycosyl donors for cellulase-catalysed lactosylation. Org Biomol Chem 8:5126–5132

    Article  CAS  PubMed  Google Scholar 

  14. Koshland DE (1953) Stereochemistry and the mechanism of enzymatic reactions. Biol Rev 28:416–436

    Article  CAS  Google Scholar 

  15. Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859

    Article  CAS  PubMed  Google Scholar 

  16. Shoda S (2001) Enzymatic glycosylation. In: Fraser-Reid BO, Tatsuta K, Thiem J (eds) Glycoscience chemistry and chemical biology, vol II. Springer, Heidelberg, pp 1465–1496

    Google Scholar 

  17. Shoda S, Uyama H, Kadogawa J, Kimura S, Kobayashi S (2016) Enzymes as green catalysts for precision macromolecular synthesis. Chem Rev 116:2307–2413

    Article  CAS  PubMed  Google Scholar 

  18. Kobayashi S, Shoda S (1996) Enzymatic synthesis of polysaccharides: a new concept in polymerization chemistry. In: Kamachi M, Nakamura A (eds) New macromolecular architecture and functions. Springer, Heidelberg, pp 171–180

    Chapter  Google Scholar 

  19. Shoda S, Shintate K, Ishihara M, Noguchi M, Kobayashi A (2007) Colorimetric assay for evaluating glycosyl fluoride-hydrolyzing activity of glycosidase by using alizarin complexon reagent. Chem Lett 36:16–17

    Article  CAS  Google Scholar 

  20. Danby PM, Withers SG (2016) Advances in enzymatic glycoside synthesis. ACS Chem Biol 11:1784–1794

    Article  CAS  PubMed  Google Scholar 

  21. Hancock SM, Vauhgan MD, Withers SG (2006) Engineering of glycosidases and glycosyltransferases. Curr Opin Chem Biol 10:509–519

    Article  CAS  PubMed  Google Scholar 

  22. MacKenzie LF, Wang QP, Warren RAJ, Withers SG (1998) Glycosynthases: mutant glycosidases for oligosaccharide synthesis. J Am Chem Soc 120:5583–5584

    Article  CAS  Google Scholar 

  23. Kobayashi S (2005) Challenge of synthetic cellulose. J Polym Sci Part A: Polym Chem 43:693–710

    Article  CAS  Google Scholar 

  24. Kobayashi S, Shoda S, Donnelly M, Church SP (1999) Enzymatic synthesis of cellulose. In: Bucke C (ed) Carbohydrate biotechnology protocols, Methods in biotechnology, vol 10. Humana Press, Totowa, pp 57–69

    Chapter  Google Scholar 

  25. Kobayashi S, Kashiwa K, Kawasaki T, Shoda S (1991) Novel method for polysaccharide synthesis using an enzyme – the 1st in vitro synthesis of cellulose via a nonbiosyntehtic path utilizing cellulase as catalyst. J Am Chem Soc 113:3079–3084

    Article  CAS  Google Scholar 

  26. Kobayashi S, Shoda S (1995) Chemical synthesis of cellulose and cello-oligomers using a hydrolysis enzyme as a catalyst. Int J Biol Macromol 17:373–379

    Article  CAS  PubMed  Google Scholar 

  27. Fort S, Boyer V, Greffe L et al (2000) Highly efficient synthesis of β(1→4)-oligo- and -polysaccharides using a mutant Cellulase. J Am Chem Soc 122:5429–5437

    Google Scholar 

  28. Noguchi M, Tanaka T, Ishihara M, et al (2007) Synthesis of artificial cellulose from novel activated glycosides catalyzed by cellulase and related enzymes. In: Abstracts of the 2nd International Cellulose Conference, Tokyo, 22–25 October 2007

    Google Scholar 

  29. Egusa S, Kitaoka T, Goto M, Wariishi H (2007) Synthesis of cellulose in vitro by using a cellulase/surfactant complex in a nonaqueous medium. Angew Chem Int Ed 46:2063–2065

    Article  CAS  Google Scholar 

  30. Egusa S, Goto M, Kitaoka T (2012) One-step synthesis of cellulose from cellobiose via protic acid-assisted enzymatic dehydration in aprotic organic media. Biomacrocolecules 13:2716–2722

    Article  CAS  Google Scholar 

  31. Faijes M, Imai T, Bulone V, Planas A (2004) In vitro synthesis of a crystalline (1→3,1→4)-β-D-glucan by a mutated (1→3,1→4)-β-D-glucanase from bacillus. Biochem J 380:635–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Saxena IM, Brown RM, Fevre M et al (1995) Multidomain architecture of β-glycosyl transferases – implications for mechanism of action. J Bacteriol 177:1419–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kadokawa J (2011) Precision polysaccharide synthesis catalyzed by enzymes. Chem Rev 111:4308–4345

    Article  CAS  PubMed  Google Scholar 

  34. Kobayashi S, Shoda S, Lee J et al (1994) Direct visualization of synthetic cellulose formation via enzymatic polymerization using transmission electron-microscopy. Macromol Chem Phys 195:1319–1326

    Article  CAS  Google Scholar 

  35. Lee JH, Brown RM, Kuga S, Shoda S, Kobayashi S (1994) Assembly of synthetic cellulose-I. Proc Natl Acad Sci U S A 91:7425–7429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kobayashi S, Hobson LJ, Sakamoto J et al (2000) Formation and structure of artificial cellulose spherulites via enzymatic polymerization. Biomacromolecules 1:168–173

    Article  CAS  PubMed  Google Scholar 

  37. Kobayashi S, Shoda S, Wen X et al (1997) Choroselective enzymatic polymerization for synthesis of natural polysaccharides. J Macromol Sci, Part A: Pure Appl Chem 34:2135–2142

    Article  Google Scholar 

  38. Hashimoto T, Tanaka H, Koizumi S et al (2006) Chemical reaction at specific sites and reaction-induced self-assembly as observed by in situ and real time SANS: enzymatic polymerization to synthetic cellulose. Biomacromolecules 7:2479–2482

    Article  CAS  PubMed  Google Scholar 

  39. Tanaka H, Koizumi S, Hashimoto T et al (2007) Self-assembly of synthetic cellulose during in-vitro enzymatic polymerization process as studied by a combined small-angle scattering method. Macromolecules 40:6304–6315

    Article  CAS  Google Scholar 

  40. Nakamura I, Yoneda H, Maeda T et al (2005) Enzymatic polymerization behavior using cellulose-binding domain deficient endoglucanase II. Macromol Biosci 5:623–628

    Article  CAS  PubMed  Google Scholar 

  41. Nakamura I, Makino A, Sugiyama J et al (2008) Enzymatic activities of novel mutant endoglucanases carrying sequential active sites. Int J Biol Macromol 43:226–231

    Article  CAS  PubMed  Google Scholar 

  42. Nakamura I, Makino A, Horikawa Y et al (2011) Preparation of fibrous cellulose by enzymatic polymerization using cross-linked mutant endoglucanase II. Chem Commun 47:10127–10129

    Article  CAS  Google Scholar 

  43. Hochuli E, Döbeli H, Schacher A (1987) New metal chelate adsorbent selective for proteins and peptides containing neighboring histidine residues. J Chromatogr A 411:177–184

    Article  CAS  Google Scholar 

  44. Nakamura I, Makino A, Ohmae M, Kimura S (2010) Immobilization of his-tagged endoglucanase on gold via various Ni-NTA self-assembled monolayers and its hydrolytic activity. Macromol Biosci 10:1265–1272

    Article  CAS  PubMed  Google Scholar 

  45. Nakamura I, Horikawa Y, Makino A et al (2011) Enzymatic polymerization catalyzed by immobilized endoglucanase on gold. Biomacromolecules 12:785–790

    Article  CAS  PubMed  Google Scholar 

  46. Nakamura I, Makino A, Ohmae M, Kimura S (2012) Enzymatic polymerization to cellulose by crosslinked enzyme immobilized on gold solid surface. Chem Lett 41:37–38

    Article  CAS  Google Scholar 

  47. Kobayashi S, Wen X, Shoda S (1996) Specific preparation of artificial xylan: a new approach to polysaccharide synthesis by using cellulase as catalyst. Macromolecules 29:2698–2700

    Article  CAS  Google Scholar 

  48. Croon I, Timell TE (1960) Distribution of substitution in a partially methylated xylan. J Am Chem Soc 82:3416–3418

    Article  CAS  Google Scholar 

  49. Moreau V, Driguez H (1996) Enzymic synthesis of hemithiocellodextrins. J Chem Soc, Perkin Trans 1(6):525–527

    Article  Google Scholar 

  50. Shoda S, Okamoto E, Kiyosada T et al (1994) Synthesis of 6- and/or 6′-O-methylated cellobiosyl fluorides: new monomers for enzymatic polymerization. Macromol Rapid Commun 15:751–756

    Article  CAS  Google Scholar 

  51. Okamoto E, Kiyosada T, Shoda S et al (1997) Synthesis of alternatingly 6-O-methylated cellulose via enzymatic polymerization of a substituted cellobiosyl fluoride monomer catalyzed by cellulase. Cellulose 4:161–172

    Article  CAS  Google Scholar 

  52. Izumi R et al (2009) Synthesis of artificial oligosaccharides by polycondensation of 2′-O-methyl cellobiosyl fluoride and mannosyl-glucosyl fluoride catalyzed by cellulase. In: Kadokawa J (ed) Interfacial researches in fundamental and material sciences of oligo- and polysaccharides. Transworld Research Network, Trivandrum, pp 45–67

    Google Scholar 

  53. Kobayashi S, Sakamoto J, Kimura S (2001) In vitro synthesis of cellulose and related polysaccharides. Prog Polym Sci 26:1525–1560

    Article  CAS  Google Scholar 

  54. Ohmae M, Makino A, Kobayashi S (2007) Enzymatic polymerization to unnatural hybrid polysaccharides. Macromol Chem Phys 208:1447–1457

    Article  CAS  Google Scholar 

  55. Kobayashi S, Makino A, Matsumoto H et al (2006) Enzymatic polymerization to novel polysaccharides having a glucose-N-acetylglucosamine repeating unit, a cellulose-chitin hybrid polysaccharide. Biomacromolecules 7:1644–1656

    Article  CAS  PubMed  Google Scholar 

  56. Saura-Valls M, Fauré R, Ragàs S et al (2006) Kinetic analysis using low-molecular mass xyloglucan oligosaccharides defines the catalytic mechanism of a populus xyloglucan endotransglycosylase. Biochem J 395:99–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tanaka T, Noguchi M, Ishihara M et al (2010) Synthesis of non-natural xyloglucans by polycondensation of 4,6- dimethoxy-1,3,5-triazin-2-yl oligosaccharide monomers catalyzed by endo-β-1,4-glucanase. Macromol Symp 297:200–209

    Article  CAS  Google Scholar 

  58. Fujita M, Shoda S, Kobayashi S (1998) Xylanase-catalyzed synthesis of a novel polysaccharide having a glucose-xylose repeating unit, a cellulose-xylan hybrid polymer. J Am Chem Soc 120:6411–6412

    Article  CAS  Google Scholar 

  59. McIntosh M, Stone BA, Stanisich VA (2005) Curdlan and other bacterial (1→3)-β-D-glucans. App Microbiol Biotechnol 68:163–173

    Article  CAS  Google Scholar 

  60. Viladot JL, Moreau V, Planas A, Driguez H (1997) Transglycosylation activity of bacillus 1,3-1,4-β-D-glucan 4-glucanohydrolases. Enzymic synthesis of alternate 1,3-1,4-β-D-glucooligosaccharides. J Chem Soc, Perkin Trans 1:2383–2387

    Article  Google Scholar 

  61. Hrmova M, Imai T, Rutten SJ et al (2002) Mutated barley (1,3)-β-D-glucan endohydrolases synthesize crystalline (1,3)-β-D-glucans. J Biol Chem 277:30102–30111

    Article  CAS  PubMed  Google Scholar 

  62. Kobayashi S, Shimada J, Kashiwa K, Shoda S (1992) Enzymatic Polymerization of α-D-Maltosyl Fluoride Utilizing α-Amylase as the Catalyst - A New Approach for the Synthesis of Maltooligosaccharides. Macromolecules 25:3237–3241

    Article  CAS  Google Scholar 

  63. Tews I, van Scheltinga ACT, Perrakis A et al (1997) Substrate-assisted catalysis unifies two families of chitinolytic enzymes. J Am Chem Soc 119:7954–7959

    Article  CAS  Google Scholar 

  64. Wiwat C, Siwayaprahm P, Bhumiratana A (1999) Purification and characterization of chitinase from bacillus circulans No. 4.1. Curr Microbiol 39:134–140

    Article  CAS  PubMed  Google Scholar 

  65. Kobayashi S, Kiyosada T, Shoda S (1996) Synthesis of artificial chitin: irreversible catalytic behavior of a glycosyl hydrolase through a transition state analogue substrate. J Am Chem Soc 118:13113–13114

    Article  CAS  Google Scholar 

  66. Merz RA, Horsch M, Nyhlen LE et al (1999) Biochemistry of chitin synthase. In: Jolles P, Muzzarelli RAA (eds) Chitin and chitinase. Birkhauser Verlag, Basel, pp 9–37

    Chapter  Google Scholar 

  67. Kiyosada T, Takada E, Shoda S et al (1995) Hydrolysis and polymerization of novel monomers containing amino sugar. Polym Prepr Jpn 44:660

    Google Scholar 

  68. Kiyosada T, Shoda S, Kobayashi S (1995) Synthesis of Artificial Chitin by Enzymatic Ring-Opening Polyaddition. Polym Prepr Jpn 44:1230–1231

    Google Scholar 

  69. Sato H, Mizutani S, Tsuge S et al (1998) Determination of the degree of acetylation of chitin/chitosan by pyrolysis gas chromatography in the presence of oxalic acid. Anal Chem 70:7–12

    Article  CAS  PubMed  Google Scholar 

  70. Sakamoto J, Sugiyama J, Kimura S et al (2000) Artificial chitin spherulites composed of single crystalline ribbons of α-chitin via enzymatic polymerization. Macromolecules 33:4155–4160

    Article  CAS  Google Scholar 

  71. Noguchi M, Tanaka T, Gyakushi H et al (2009) Efficient synthesis of sugar oxazolines from unprotected N-acetyl-2-amino sugars by using chloroformamidinium reagent in water. J Org Chem 74:2210–2212

    Article  CAS  PubMed  Google Scholar 

  72. Noguchi M, Fujieda T, Huang WC et al (2012) A practical one-step synthesis of 1,2-oxazoline derivatives from unprotected sugars and its application to chemoenzymatic β-N-acetylglucosaminidation of disialo-oligosaccharide. Helv Chim Acta 95:1928–1936

    Article  CAS  Google Scholar 

  73. Yoshida N, Tanaka T, Noguchi M et al (2012) One-pot chemoenzymatic route to chitoheptaose via specific transglycosylation of chitopentaose-oxazoline on chitinase-template. Chem Lett 41:689–690

    Article  CAS  Google Scholar 

  74. Shoda S, Fujita M, Lohavisavapanichi C et al (2002) Efficient method for the elongation of the N-acetylglucosamine unit by combined use of chitinase and β-galactosidase. Helv Chim Acta 85:3919–3936

    Article  CAS  Google Scholar 

  75. Kohri M, Kobayashi A, Noguchi M et al (2006) Stepwise synthesis of chitooligosaccharides through a transition-state analogue substrate catalyzed by mutants of chitinase A1 from bacillus circulans WL-12. Holzforschung 60:485–491

    Article  CAS  Google Scholar 

  76. Shoda S, Misawa Y, Nishijima Y et al (2006) Chemo-enzymatic synthesis of novel oligo-N-acetyllactosamine derivatives having a β(1-4)–β(1-6) repeating unit by using transition state analogue substrate. Cellulose 13:477–484

    Article  CAS  Google Scholar 

  77. Kobayashi S, Makino A, Tachibana N et al (2006) Chitinase-catalyzed synthesis of a chitin-xylan hybrid polymer: a novel water-soluble β(1→4) polysaccharide having an N-acetylglucosamine-xylose repeating unit. Macromol Rapid Commun 27:781–786

    Article  CAS  Google Scholar 

  78. Makino A, Kurosaki K, Ohmae M et al (2006) Chitinase-catalyzed synthesis of alternatingly N-deacetylated chitin: a chitin-chitosan hybrid polysaccharide. Biomacromolecules 7:950–957

    Article  CAS  PubMed  Google Scholar 

  79. Sakamoto J, Kobayashi S (2004) Enzymatic synthesis of 3-O-methylated chitin oligomers from new derivatives of a chitobiose oxazoline. Chem Lett 33:698–699

    Article  CAS  Google Scholar 

  80. Ochiai H, Ohmae M, Kobayashi S (2004) Enzymatic glycosidation of sugar oxazolines having a carboxylate group catalyzed by chitinase. Carbohydr Res 339:2769–2788

    Article  CAS  PubMed  Google Scholar 

  81. Ochiai H, Ohmae M, Kobayashi S (2004) Enzymatic synthesis of alternatingly 6-O-carboxymethylated chitotetraose by selective glycosidation with chitinase catalysis. Chem Lett 33:694–695

    Article  CAS  Google Scholar 

  82. Makino A, Ohmae M, Kobayashi S (2006) Synthesis of fluorinated chitin derivatives via enzymatic polymerization. Macromol Biosci 6:862–872

    Article  CAS  PubMed  Google Scholar 

  83. Makino A, Sakamoto J, Ohmae M et al (2006) Effect of fluorine substituent on the chitinase-catalyzed polymerization of sugar oxazoline derivatives. Chem Lett 35:160–161

    Article  CAS  Google Scholar 

  84. Makino A, Nagashima H, Ohmae M et al (2007) Chitinase-catalyzed synthesis of an alternatingly N-sulfonated chitin derivative. Biomacromolecules 8:188–195

    Article  CAS  PubMed  Google Scholar 

  85. Makino A, Ohmae M, Kobayashi S (2006) Chitinase-catalyzed copolymerization to a chitin derivative having glucosamine unit in controlled proportion. Polym J 38:1182–1188

    Article  CAS  Google Scholar 

  86. Stern R, Jedrzejas MJ (2006) Hyaluronidases: their genomics, structures, and mechanisms of action. Chem Rev 106:818–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. El-Safory NS, Fazary AE, Lee CK (2010) Hyaluronidases, a group of glycosidases: current and future perspectives. Carbohydr Polym 81:165–181

    Article  CAS  Google Scholar 

  88. Kobayashi S, Morii H, Itoh R et al (2001) Enzymatic polymerization to atificial hyaluronan: a novel method to synthesize a glycosaminoglycan using a transition state analogue monomer. J Am Chem Soc 123:11825–11826

    Article  CAS  PubMed  Google Scholar 

  89. Kogan G, Šoltés L, Stern R et al (2007) Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett 29:17–25

    Article  CAS  PubMed  Google Scholar 

  90. Kobayashi S, Fujikawa S, Ohmae M (2003) Enzymatic synthesis of chondroitin and its derivatives catalyzed by hyaluronidase. J Am Chem Soc 125:14357–14369

    Article  CAS  PubMed  Google Scholar 

  91. Baeurle SA, kiselev MG, Makarova ES et al (2009) Effect of the counterion behavior on the frictional–compressive properties of chondroitin sulfate solutions. Polymer 50:1805–1813

    Article  CAS  Google Scholar 

  92. Fujikawa S, Ohmae M, Kobayashi S (2005) Enzymatic synthesis of chondroitin 4-sulfate with well-defined structure. Biomacromolecules 6:2935–2942

    Article  CAS  PubMed  Google Scholar 

  93. Kobayashi S, Ohmae M, Ochiai H (2006) A hyaluronidase supercatalyst for the enzymatic polymerization to synthesize glycosaminoglycans. Chem Eur J 12:5962–5971

    Article  CAS  PubMed  Google Scholar 

  94. Ochiai H, Fujikawa S, Ohmae M (2007) Enzymatic copolymerization to hybrid glycosaminoglycans: a novel strategy for intramolecular hybridization of polysaccharides. Biomacromolecules 8:1802–1806

    Article  CAS  PubMed  Google Scholar 

  95. Yamagishi K, Suzuki K, Imai K et al (2003) Purification, characterization, and molecular cloning of a novel keratan sulfate hydrolase, endo-β-N-acetylglucosaminidase, from bacillus circulans. J Biol Chem 278:25766–25772

    Article  CAS  PubMed  Google Scholar 

  96. Kariya Y, Watabe S, Mochizuki H et al (2003) Modification of di- and tetrasaccharides from shark cartilage keratan sulphate by refined anhydromethanolic hydrochloric acid-treatments and evaluation of their specific desulphation. Carbohydr Res 338:1133–1138

    Article  CAS  PubMed  Google Scholar 

  97. Pomin VH (2015) Keratan sulfate: an up-to-date review. Int J Biol Macromol 72:282–289

    Article  CAS  PubMed  Google Scholar 

  98. Ohmae M, Sakaguchi K, Kaneto T et al (2007) Keratanase II-catalyzed synthesis of keratan sulfate oligomers by using sugar oxazolines as transition-state analogue substrate monomers: a novel insight into the enzymatic catalysis mechanism. ChemBioChem 8:1710–1720

    Article  CAS  PubMed  Google Scholar 

  99. Yamazaki Y, Kimura S, Ohmae M (2018) Reaction specificity of keratanase II in the transglycosylation using the sugar oxazolines having keratan sulfate repeating units. Carbohydr Res 456:61–68

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shin-ichiro Shoda or Shunsaku Kimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shoda, Si., Noguchi, M., Li, G., Kimura, S. (2019). Synthesis of Polysaccharides I: Hydrolase as Catalyst. In: Kobayashi, S., Uyama, H., Kadokawa, Ji. (eds) Enzymatic Polymerization towards Green Polymer Chemistry. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3813-7_2

Download citation

Publish with us

Policies and ethics