Enzymatic Modification of Polymers

  • H. N. Cheng
Part of the Green Chemistry and Sustainable Technology book series (GCST)


In polymer applications and development, it is often necessary to modify an existing polymer structure in order to impart special end-use properties. Whereas chemical modification methods are most commonly practiced, sometimes enzyme-catalyzed modifications may be desirable because of the specificity of the reactions, reduction in the by-products produced, milder reaction conditions, and more benign environmental impact. A number of enzyme-catalyzed reactions are reviewed in this paper, covering primarily biobased materials like polysaccharides, proteins, triglycerides, and lignin. The enzymes used include mostly hydrolases, oxidoreductases, and transferases, with occasional involvement of lyases and isomerases. The types of reactions are diverse and include polymer hydrolysis and degradation, polymerization, oxidation, glycosylation, cross-linking, and transformation of functional groups. Because biopolymers are agro-based and occur abundantly in nature, they are often available in large quantities and amenable to enzymatic reactions. As such, the combination of biopolymers and enzymes represents a good product development opportunity and a useful tool for postharvest agricultural technology and green polymer chemistry.


Biopolymers Enzymes Functionalization Hydrolysis Lignin Modification Polymers Polysaccharide Protein Triglyceride 



Thanks are due to Suhad Wojkowski for conducting the exhaustive literature search, Kaylin Kilgore for help with references, and Professor Shiro Kobayashi for his kind invitation to write this chapter and for his help with the chapter format. The author also thanks Dr. Qu-Ming Gu for the productive collaboration for many years and valuable input on this review. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer.


  1. 1.
    Cheng HN, Gross RA, Smith PB (eds) (2018) Green polymer chemistry: new products, processes, and applications. ACS symposium series 1310. American Chemical Society, Washington, DCGoogle Scholar
  2. 2.
    Cheng HN, Gross RA, Smith PB (eds) (2015) Green polymer chemistry: biobased materials and biocatalysis, ACS symposium series 1192. American Chemical Society, Washington, DCGoogle Scholar
  3. 3.
    Cheng HN, Gross RA, Smith PB (eds) (2013) Green polymer chemistry: biocatalysis and materials II, ACS symposium series 1144. American Chemical Society, Washington, DCGoogle Scholar
  4. 4.
    Loos K (ed) (2011) Biocatalysis in polymer chemistry. Wiley-VCH, WeinheimGoogle Scholar
  5. 5.
    Palmans ARA, Heise A (eds) (2010) Enzymatic polymerization. Springer, BerlinGoogle Scholar
  6. 6.
    Cheng HN, Gross RA, Smith PB (eds) (2010) Green polymer chemistry: biocatalysis and biomaterials, ACS symposium series 1043. American Chemical Society, Washington, DCGoogle Scholar
  7. 7.
    Kobayashi S, Ritter H, Kaplan D (eds) (2006) Enzyme-catalyzed synthesis of polymers. Springer, BerlinGoogle Scholar
  8. 8.
    Shoda S, Uyama H, Kadokawa J, Kimura S, Kobayashi S (2016) Enzymes as green catalysts for precision macromolecular synthesis. Chem Rev 116:2307–2413PubMedCrossRefGoogle Scholar
  9. 9.
    Miletic N, Nastasovic A, Loos K (2012) Immobilization of biocatalysts for enzymatic polymerizations: possibilities, advantages, applications. Bioresource Technol 115:126–135CrossRefGoogle Scholar
  10. 10.
    Kadokawa T, Kobayashi S (2010) Polymer synthesis by enzymatic catalysis. Curr Opinions Chem Biol 14:145–153CrossRefGoogle Scholar
  11. 11.
    Cheng HN, Gross RA (2010) Green polymer chemistry: biocatalysis and biomaterials. ACS Symp Ser 1043:1–14CrossRefGoogle Scholar
  12. 12.
    Cheng HN, Gross RA (2008) Polymer biocatalysis and biomaterials: current trends and development. ACS Symp Ser 999:1–20Google Scholar
  13. 13.
    Gross RA, Kumar A, Kalra B (2001) Polymer synthesis by in vitro enzyme catalysis. Chem Rev 101:2097–2124PubMedCrossRefGoogle Scholar
  14. 14.
    Kobayashi S, Uyama H, Kimura S (2001) Enzymatic polymerization. Chem Rev 101:3793–3818PubMedCrossRefGoogle Scholar
  15. 15.
    White JS, White DC (1997) Source book of enzymes. CRC Press, Boca RatonGoogle Scholar
  16. 16.
    Shoda S, Kobayashi S (1997) Recent developments in the use of enzymes in oligo- and polysaccharide synthesis. Trends Polym Sci 5:109–115Google Scholar
  17. 17.
    Kobayashi S, Sakamoto J, Kimura S (2001) In vitro synthesis of cellulose and related polysaccharides. Prog Polym Sci 26:1525–1560CrossRefGoogle Scholar
  18. 18.
    Makino A, Kobayashi S (2008) Synthesis of unnatural hybrid polysaccharides via enzymatic polymerization. ACS Symp Ser 999:322–341CrossRefGoogle Scholar
  19. 19.
    Faijes M, Planas A (2007) In vitro synthesis of artificial polysaccharides by glycosidases and glycosynthases. Carbohydr Res 342:1581–1594PubMedCrossRefGoogle Scholar
  20. 20.
    Jahn M, Withers AG (2003) New approaches to enzymatic oligosaccharide synthesis: Glycosynthases and thioglycoligases. Biocatalysis Biotransformation 21:159–166CrossRefGoogle Scholar
  21. 21.
    Perugino G, Trincone A, Rossi M, Moracci M (2004) Oligosaccharide synthesis by glycosynthases. Trends Biotechnol 22:31–37PubMedCrossRefGoogle Scholar
  22. 22.
    Li H, Zhang H, Yi W et al (2005) Enzymatic synthesis of complex bacterial carbohydrate polymers. ACS Symp Ser 900:192–216CrossRefGoogle Scholar
  23. 23.
    Kobayashi S (2015) Enzymatic ring-opening polymerization and polycondensation for the green synthesis of polyesters. Polym Adv Technol 26:677–686CrossRefGoogle Scholar
  24. 24.
    Yu Y, Wu D, Liu C et al (2012) Lipase/esterase-catalyzed synthesis of aliphatic polyesters via polycondensation: a review. Process Biochem 47:1027–1036CrossRefGoogle Scholar
  25. 25.
    Gross RA, Ganesh M, Lu W (2010) Enzyme-catalysis breathes new life into polyester condensation polymerizations. Trends Biotechnol 28:435–443PubMedCrossRefGoogle Scholar
  26. 26.
    Barrera-Rivera KA, Marcos-Fernandez A, Martinez-Richa A (2010) Chemo-enzymatic syntheses of polyester-urethanes. ACS Symp Ser 1043:227–235CrossRefGoogle Scholar
  27. 27.
    Palmans ARA, van As BAC, van Buijtenen J et al (2008) Ring-opening of ω-substituted lactones by Novozym 435: selectivity and application to iterative tandem catalysis. ACS Symp Ser 999:230–244CrossRefGoogle Scholar
  28. 28.
    Varma IK, Albertsson AC, Rajkhowa R, Srivastava RK (2005) Enzyme catalyzed synthesis of polyesters. Prog Polym Sci 30:949–981CrossRefGoogle Scholar
  29. 29.
    Mahapatro A, Kumar A, Gross RA (2004) Mild, solvent-free ω-hydroxy acid polycondensations catalyzed by Candida antarctica lipase B. Biomacromolecules 5:62–68PubMedCrossRefGoogle Scholar
  30. 30.
    Divakar SJ (2004) Porcine pancreas lipase catalysed ring-opening polymerization of ε-caprolactone. Macromol Sci Pure Appl Chem A41:537–546CrossRefGoogle Scholar
  31. 31.
    Uyama H, Kuwabara M, Tsujimoto T, Kobayashi S (2003) Enzymatic synthesis and curing of biodegradable epoxide-containing polyesters from renewable resources. Biomacromolecules 4:211–215PubMedCrossRefGoogle Scholar
  32. 32.
    Kikuchi H, Uyama H, Kobayashi S (2002) Lipase-catalyzed ring-opening polymerization of substituted lactones. Polym J 34:835–840CrossRefGoogle Scholar
  33. 33.
    Kim DY, Dordick JS (2001) Combinatorial array-based enzymatic polyester synthesis. Biotechnol Bioeng 76:200–206PubMedCrossRefGoogle Scholar
  34. 34.
    Tsujimoto T, Uyama H, Kobayashi S (2001) Enzymatic synthesis of cross-linkable polyesters from renewable resources. Biomacromolecules 2:29–31PubMedCrossRefGoogle Scholar
  35. 35.
    Cheng HN, Gu QM (2010) Synthesis of poly(aminoamides) via enzymatic means. ACS Symp Ser 1043:255–263CrossRefGoogle Scholar
  36. 36.
    Gu QM, Maslanka WW, Cheng HN (2008) Enzyme-catalyzed polyamides and their derivatives. ACS Symp Ser 999:309–319CrossRefGoogle Scholar
  37. 37.
    Cheng HN, Gu QM, Maslanka WW (2004) Enzyme-catalyzed polyamides and compositions and processes of preparing and using the same. U.S. Patent 6,677,427, 13 January 2004Google Scholar
  38. 38.
    Jiang Y, Loos K (2016) Enzymatic synthesis of biobased polyesters and polyamides. Polymers 8:243. CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Stavila E, Loos K (2015) Synthesis of polyamides and their copolymers via enzymatic polymerization. J Renewable Mater 3:268–280CrossRefGoogle Scholar
  40. 40.
    Schwab LW, Baum I, Fels G, Loos K (2010) Mechanistic insight in the enzymatic ring-opening polymerization of β-propiolactam. ACS Symp Ser 1043:265–278CrossRefGoogle Scholar
  41. 41.
    Li G, Raman VK, Xie WC, Gross RA (2008) Protease-catalyzed co-oligomerizations of L-leucine ethyl ester with L-glutamic acid diethyl ester: Sequence and chain length distributions. Macromolecules 41:7003–7012CrossRefGoogle Scholar
  42. 42.
    Li G, Vaidya A, Viswanathan K (2006) Rapid regioselective oligomerization of L-glutamic acid diethyl ester catalyzed by papain. Macromolecules 39:7915–7921CrossRefGoogle Scholar
  43. 43.
    Müller WEG, Schröder HC, Burghard Z et al (2013) Silicateins – a novel paradigm in bioinorganic chemistry: enzymatic synthesis of inorganic polymeric silica. Chem Eur J 19:5790–5804PubMedCrossRefGoogle Scholar
  44. 44.
    Whitlock PW, Patwardhan SV, Stone MO et al (2008) Synthetic peptides derived from the diatom Cylindrotheca fusiformis: kinetics of silica formation and morphological characterization. ACS Symp Ser 999:412–433CrossRefGoogle Scholar
  45. 45.
    Morse DE (1999) Silicon biotechnology: Harnessing biological silica production to construct new materials. Trends Biotechnol 17:230–232CrossRefGoogle Scholar
  46. 46.
    Cha JN, Stucky GD, Morse DE, Deming TJ (2000) Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature 403:289–292PubMedCrossRefGoogle Scholar
  47. 47.
    Nishino H, Mori T, Okahata Y (2002) Enzymatic silicone oligomerization catalyzed by a lipid-coated lipase. Chem Commun 2002:2684–2685CrossRefGoogle Scholar
  48. 48.
    Puskas JE, Castano M, Gergely AL (2015) Green polymer chemistry: enzyme-catalyzed polymer functionalization. ACS Symp Ser 1192:17–25CrossRefGoogle Scholar
  49. 49.
    Puskas JE, Seo KS, Castano M, Casiano M, Wesdemiotis C (2013) Green polymer chemistry: enzymatic functionalization of poly(ethylene glycol)s under solvent-less conditions. ACS Symp Ser 1144:81–94CrossRefGoogle Scholar
  50. 50.
    Gu QM, Cheng HN (2005) Enzyme-catalyzed condensation reactions for polymer modifications. ACS Symp Ser 900:427–436CrossRefGoogle Scholar
  51. 51.
    Clarson SJ, Poojari Y, Williard MD (2013) Biocatalysis for silicone-based copolymers. ACS Symp Ser 1144:95–108CrossRefGoogle Scholar
  52. 52.
    Sahoo B, Brandstadt KF, Lane TH, Gross RA (2005) “Sweet Silicones”: Biocatalytic reactions to form organosilicon carbohydrate macromers. ACS Symp Ser 900:182–190CrossRefGoogle Scholar
  53. 53.
    Cheng HN, Gu QM, Qiao L (2005) Reactions of enzymes with non-substrate polymers. ACS Symp Ser 900:267–278CrossRefGoogle Scholar
  54. 54.
    Kulshrestha AS, Kumar A, Gao W, Gross RA (2005) Versatile route to polyol polyesters by lipase catalysis. ACS Symp Ser 900:327–342CrossRefGoogle Scholar
  55. 55.
    Henderson LA (2005) Biotechnology: Key to developing sustainable technology for the 21st century: Illustrated in three case studies. ACS Symp Ser 900:14–36CrossRefGoogle Scholar
  56. 56.
    Nduko JM, Sun J, Taguchi S (2015) Biosynthesis, properties, and biodegradation of lactate-based polymers. ACS Symp Ser 1192:113–131CrossRefGoogle Scholar
  57. 57.
    Kawai F, Thumarat U, Kitadokoro K et al (2013) Comparison of polyester-degrading cutinases from genus Thermobifida. ACS Symp Ser 1144:111–120CrossRefGoogle Scholar
  58. 58.
    Ronkvist AM, Xie W, Lu W et al (2010) Surprisingly rapid enzymatic hydrolysis of poly(ethylene terephthalate). ACS Symp Ser 1043:386–404Google Scholar
  59. 59.
    Kawai F (2010) Polylactic acid (PLA)-degrading microorganisms and PLA depolymerases. ACS Symp Ser 1043:406–414Google Scholar
  60. 60.
    Konda A, Sugihara S, Okamoto K et al (2008) Enzymatic degradation of diol-diacid type polyesters into cyclic oligomers and its application for the selective chemical recycling of PLLA-based polymer blends. ACS Symp Ser 999:246–262CrossRefGoogle Scholar
  61. 61.
    Riehle RJ (2005) Kymene® G3-X wet-strength resin: enzymatic treatment during microbial dehalogenation. ACS Symp Ser 900:302–331CrossRefGoogle Scholar
  62. 62.
    Conboy CB, Li K (2005) 1H NMR for high-throughput screening to identify novel enzyme activity. ACS Symp Ser 900:51–62CrossRefGoogle Scholar
  63. 63.
    Matama T, Carneiro F, Caparros C et al (2007) Using a nitrilase for the surface modification of acrylic fibres. Biotechnol J 2:353–360PubMedCrossRefGoogle Scholar
  64. 64.
    Battistel M, Morra M, Marinetti M (2001) Enzymatic surface modification of acrylonitrile fibers. Appl Surf Sci 177:32–41CrossRefGoogle Scholar
  65. 65.
    Tauber MM, Cavaco-Paolo A, Robra KH et al (2000) Nitrile hydratase and amidase from Rhodococcus rhodochrous hydrolyse acrylic fibers and granular polyacrylonitrile. Appl Env Microb 66:1634–1638CrossRefGoogle Scholar
  66. 66.
    Guebitz GM, Cavaco-Paulo A (2008) Enzymes go big: surface hydrolysis and functionalisation of synthetic polymers. Trends Biotechnol 26:32–38PubMedCrossRefGoogle Scholar
  67. 67.
    Guebitz GM, Cavaco-Paulo A (2003) New substrates for reliable enzymes: enzymatic modification of polymers. Curr Opinion Biotechnol 14:577–582CrossRefGoogle Scholar
  68. 68.
    Gitsov I, Simonyan A (2013) “Green” synthesis of bisphenol polymers and copolymers, mediated by supramolecular complexes of laccase and linear dendritic block copolymers. ACS Symp Ser 1144:121–139CrossRefGoogle Scholar
  69. 69.
    Kadota J, Fukuoka T, Uyama H, Hasegawa K, Kobayashi S (2004) New positive-type photoresists based on enzymatically synthesized polyphenols. Macromol Rapid Commun 25:441–444Google Scholar
  70. 70.
    Shutava T, Zheng Z, John V, Lvov Y (2004) Microcapsule modification with peroxidase-catalyzed phenol polymerization. Biomacromolecules 5:914–921PubMedCrossRefGoogle Scholar
  71. 71.
    Mita N, Tawaki S, Uyama H, Kobayashi S (2003) Laccase-catalyzed oxidative polymerization of phenols. Macromol Biosci 3:253–257CrossRefGoogle Scholar
  72. 72.
    Uyama H, Maruichi N, Tonami H, Kobayashi S (2002) Peroxidase-catalyzed oxidative polymerization of bisphenols. Biomacromolecules 3:187–193PubMedCrossRefGoogle Scholar
  73. 73.
    Bruno F, Nagarajan R, Stenhouse P, Yang K, Kumar J, Tripathy SK, Samuelson LA (2001) Polymerization of water-soluble conductive polyphenol using horseradish peroxidase. J Macromol Sci A39:1417–1426CrossRefGoogle Scholar
  74. 74.
    Ikeda R, Sugihara J, Uyama H, Kobayashi S (1996) Enzymatic oxidative polymerization of 2,6-dimethylphenol. Macromolecules 29:8702–8705CrossRefGoogle Scholar
  75. 75.
    Ikeda R, Uyama H, Kobayashi S (1996) Novel synthetic pathway to a poly(phenylene oxide): laccase-catalyzed oxidative polymerization of syringic Acid. Macromolecules 29:3053–3054CrossRefGoogle Scholar
  76. 76.
    Bouldin R, Kokil A, Ravichandran S et al (2010) Enzymatic synthesis of electrically conducting polymers. ACS Symp Ser 1043:315–341CrossRefGoogle Scholar
  77. 77.
    Kumar J, Tripathy S, Senecal KJ, Samuelson L (1999) Enzymatically synthesized conducting polyaniline. J Am Chem Soc 121:71–78CrossRefGoogle Scholar
  78. 78.
    Tripathy S (1999) Horseradish peroxidase provides clean route to conducting polymer. Chem Eng News 77:68–69Google Scholar
  79. 79.
    Renggli K, Spulber M, Pollard J (2013) Biocatalytic ATRP: controlled radical polymerizations mediated by enzymes. ACS Symp Ser 1144:163–171CrossRefGoogle Scholar
  80. 80.
    Hollmann F, Arends IWCE (2012) Enzyme initiated radical polymerizations. Polymers 4:759–793CrossRefGoogle Scholar
  81. 81.
    Teixeira D, Lalot T, Brigodiot M, Marechal E (1999) β-Diketones as key compounds in free-radical polymerization by enzyme-mediated initiation. Macromolecules 32:70–72CrossRefGoogle Scholar
  82. 82.
    Kalra B, Gross RA (2000) Horseradish peroxidase mediated free radical polymerization of methyl methacrylate. Biomacromolecules 1:501–505PubMedCrossRefGoogle Scholar
  83. 83.
    Singh A, Roy S, Samuelson L et al (2001) Peroxidase, hematin, and pegylated-hematin catalyzed vinyl polymerizations in water. J Macromol Sci A38:1219–1230CrossRefGoogle Scholar
  84. 84.
    Tsujimoto T, Uyama H, Kobayashi S (2001) Polymerization of vinyl monomers using oxidase catalysts. Macromol Biosci 1:228–232CrossRefGoogle Scholar
  85. 85.
    Kadokawa J, Kokubo A, Tagaya H (2002) Free-radical polymerization of vinyl monomers using hematin as a biomimetic catalyst in place of enzyme. Macromol Biosci 2:257–260CrossRefGoogle Scholar
  86. 86.
    Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297:803–807PubMedCrossRefGoogle Scholar
  87. 87.
    Brady RL, Leibfried RT, Nguyen TT (2000) Oxidation in solid state of oxidizable galactose type of alcohol configuration containing polymer. U S Patent 6,124,124, 26 September 2000Google Scholar
  88. 88.
    Chiu CW, Jeffcoat R, Henley M, Peek L (1996) Aldehyde cationic derivatives of galactose containing polysaccharides used as paper strength additives. US Patent 5,554,745, 10 September 1996Google Scholar
  89. 89.
    Frollini E, ReedWF MM, Rinaudo M (1995) Polyelectrolytes from polysaccharides: selective oxidation of guar gum—a revisited reaction. Carbohydr Polym 27:129–135CrossRefGoogle Scholar
  90. 90.
    Govar CJ, Chen T, Liu NC, Harris MT, Payne GF (2002) Grafting renewable chemicals to functionalize chitosan. ACS Symp Ser 840:231–242CrossRefGoogle Scholar
  91. 91.
    Chen T, Kumar G, Harris MT, Smith PJ, Payne GF (2000) Enzymatic grafting of hexyloxyphenol onto chitosan to alter surface and rheological properties. Biotechnol Bioeng 70:564–573PubMedCrossRefGoogle Scholar
  92. 92.
    Chen F, Small DA, McDermott MK, Bentley WE, Payne GF (2005) Biomimetic approach to biomaterials: amino acid-residue-specific enzymes for protein grafting and cross-linking. ACS Symp Ser 900:107–118CrossRefGoogle Scholar
  93. 93.
    Bjorkling F, Godtfredsen SE, Kirk O (1990) Lipase-mediated formation of peroxycarboxylic acids used in catalytic epoxidation of alkenes. J Chem Soc Chem Commun 1990:1301–1303CrossRefGoogle Scholar
  94. 94.
    Bjorkling F, Frykman H, Godtfredsen SE, Kirk O (1992) Lipase catalyzed synthesis of peroxycarboxylic acids and lipase mediated oxidations. Tetrahedron 48:4587–4592CrossRefGoogle Scholar
  95. 95.
    Jarvie AWP, Overton N, St. Pourcain CB (1999) Enzyme catalysed modification of synthetic polymers. J Chem Soc Perkin Trans 1(1999):2171–2176CrossRefGoogle Scholar
  96. 96.
    Hu S, Gao W, Kumar R, Gross RA, Qu QM, Cheng HN (2002) Lipase-mediated selective TEMPO oxidation of hydroxyethylcellulose. ACS Symp Ser 840:253–264CrossRefGoogle Scholar
  97. 97.
    Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates. FEBS Lett 267:99–102PubMedCrossRefGoogle Scholar
  98. 98.
    Bourbonnais R, Paice MG, Reid ID et al (1995) Lignin oxidation by laccase isozymes from trametes versicolor and role of the mediator 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Appl Environ Microbial 61:1876–1880Google Scholar
  99. 99.
    Call HP, Mucke I (1997) History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym®-process). J Biotechnol 53:163–202CrossRefGoogle Scholar
  100. 100.
    Wang PG, Fitz W, Wong CH (1995) Making complex carbohydrates via enzymatic routes. Chemtech 25:22–32Google Scholar
  101. 101.
    Guo Z, Wang PG (1997) Utilization of glycosyltransferases to change oligosaccharide structures. Appl Biochem Biotechnol 68:1–20PubMedCrossRefGoogle Scholar
  102. 102.
    Palcic M (1999) Biocatalytic synthesis of oligosaccharides. Curr Opin Biotechnol 10: 616-624. and refs. therein.Google Scholar
  103. 103.
    Chen X, Kowal P, Wang PG (2000) Large-scale enzymatic synthesis of oligosaccharides. Current Opin Drug Disc Dev 3:756–763Google Scholar
  104. 104.
    Sears P, Wong CH (2001) Toward automated synthesis of oligosaccharides and glycoproteins. Science 291:2344–2350PubMedCrossRefGoogle Scholar
  105. 105.
    DeAngelis PL (2005) Sugar polymer engineering with glycosaminoglycan synthase enzymes: 5 to 5,000 sugars and a dozen flavors. ACS Symp Ser 900:232–245CrossRefGoogle Scholar
  106. 106.
    DeAngelis PL (2010) Glycoaminoglycan synthase: catalysts for customizing sugar polymer size and chemistry. ACS Symp Ser 1043:299–303CrossRefGoogle Scholar
  107. 107.
    Li L, Yi W, Chen W et al (2010) Production of natural polysaccharides and their analogues via biopathway engineering. ACS Symp Ser 1043:281–297CrossRefGoogle Scholar
  108. 108.
    Kubik C, Sikora B, Bielecki S (2004) Immobilization of dextransucrase and its use with soluble dextranase for glucooligosaccharides synthesis. Enzyme Microb Technol 34:555–560CrossRefGoogle Scholar
  109. 109.
    Kim D, Robyt JF, Lee SY et al (2003) Dextran molecular size and degree of branching as a function of sucrose concentration, pH, and temperature of reaction of leuconostoc mesenteroides B-512FMCM dextransucrase. Carbohydr Res 338:1183–1189PubMedCrossRefGoogle Scholar
  110. 110.
    Kim YM, Park JP, Sinha J et al (2001) Acceptor reactions of a novel transfructosylating enzyme from Bacillus sp. Biotechnol Lett 23:13–16CrossRefGoogle Scholar
  111. 111.
    Demuth B, Jordening HJ, Buchholz K (1992) Modelling of oligosaccharide synthesis by dextransucrase. Biotechnol Bioeng 62:583–592CrossRefGoogle Scholar
  112. 112.
    Pfannmueller B (1975) Living-polymerisation und enzymatische polysaccharidsynthese. Naturwissenschaften 62:231–233CrossRefGoogle Scholar
  113. 113.
    Ziegast G, Pfannmueller B (1987) Phosphorolytic syntheses with di-, oligo- and multi- functional primers. Carbohydr Res 160:185–204CrossRefGoogle Scholar
  114. 114.
    van der Vlist J, Loos K (2008) Novel materials based on enzymatically synthesized amylose and amylopectin. ACS Symp Ser 999:362–378CrossRefGoogle Scholar
  115. 115.
    Kamiya N, Takazawa T, Tanaka T, Ueda H, Nagamune T (2003) Site-specific cross-linking of functional proteins by transglutamination. Enzyme Microb Technol 33:492–496CrossRefGoogle Scholar
  116. 116.
    Dickinson E (1997) Enzymic crosslinking as a tool for food colloid rheology control and interfacial stabilization. Trends Food Sci Technol 8:334–339CrossRefGoogle Scholar
  117. 117.
    Ertesvag H, Doseth B, Larsen B, Skjak-Braek G, Valla S (1994) Cloning and expression of an Azotobacter vinelandii mannuronan C-5-epimerase gene. J Bacteriol 176:2846–2853PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Franklin MJ, Chitnis CE, Gacesa P, Sonesson A, White DC, Ohman DE (1994) Pseudomonas aeruginosa AlgG is a polymer level alginate C5-mannuronan epimerase. J Bacteriol 176:1821–1830PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Harmann M, Holm OB, Johansen GAB, Skjak-Braek G, Stokke BT (2002) Mode of action of recombinant Azotobacter vinelandii mannuronan C-5 epimerases AlgE2 and AlgE4. Biopolymers 63:77–88CrossRefGoogle Scholar
  120. 120.
    Harmann M, Dunn AS, Markussen A, Grasdalen H, Valla S, Skjak-Braek G (2002) Time-resolved 1H and 13C NMR spectroscopy for detailed analyses of the Azotobacter vinelandii mannuronan C-5 epimerase reaction. Biochim Biophys Acta 1570:104–112CrossRefGoogle Scholar
  121. 121.
    Crescenzi V, Skjak-Braek G, Dentini M, Maci G, Bernalda MS, Risica D, Capitani D, Mannina L, Segre AL (2002) A high field NMR study of the products ensuing from konjak glucomannan C(6)-oxidation followed by enzymatic C(5)-epimerization. Biomacromolecules 3:1343–1352Google Scholar
  122. 122.
    Crescenzi V, Dentini M, Risica D, Spadoni S, Skjak-Braek G, Capitani D, Mannina L, Viele S (2004) C(6)-oxidation followed by C(5)-epimerization of guar gum studied by high field NMR. Biomacromolecules 5:537–546PubMedCrossRefGoogle Scholar
  123. 123.
    Stephen AM, Phillips GO, Williams PA (eds) (2006) Food polysaccharides and their applications, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  124. 124.
    Tiwari A (ed) (2010) Polysaccharides: development, properties and applications. Nova Science Publishers, HauppaugeGoogle Scholar
  125. 125.
    Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive Cellulose Chemistry. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  126. 126.
    Cheng HN, Cote GL, Baianu IC (eds) (1999) Application of polymers in foods. (Macromolecular Symposia 140). Wiley-VCH, WeinheimGoogle Scholar
  127. 127.
    Li S, Xiong Q, Lai X et al (2016) Molecular modification of polysaccharides and resulting bioactivities. Compreh Rev Food Sci Food Safety 15:237–250CrossRefGoogle Scholar
  128. 128.
    Cumpstey I (2013) Chemical modification of polysaccharides. ISRN Org Chem 2013:417672. CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Malviya R, Sharma PK, Dubey SK (2016) Modification of polysaccharides: Pharmaceutical and tissue engineering applications with commercial utility (patents). Mat Sci Eng C 68:929–938CrossRefGoogle Scholar
  130. 130.
    Cheng HN, Gu QM (2012) Enzyme-catalyzed modification of polysaccharides and poly(ethylene glycol). Polymers 4:1311–1330CrossRefGoogle Scholar
  131. 131.
    Karaki N, Aljawish A, Humeau C et al (2016) Enzymatic modification of polysaccharides: Mechanisms, properties, and potential applications: A review. Enzym Microb Technol 90:1–18CrossRefGoogle Scholar
  132. 132.
    McCleary BV (1986) Enzymatic modification of plant polysaccharides. Int J Biol Macromol 8:349–354CrossRefGoogle Scholar
  133. 133.
    Saake B, Horner S, Puls J (1998) Progress in the enzymic hydrolysis of cellulose derivatives. ACS Symp Ser 688:201–216CrossRefGoogle Scholar
  134. 134.
    Sau AC U.S. Patent 5,879,440, March 8, 1999Google Scholar
  135. 135.
    Sau AC U.S. Patent 5,989,329, November 23, 1999Google Scholar
  136. 136.
    Rigouin C, Delbarre-Ladrat C, Ratiskol C et al (2012) Screening of enzymatic activities for the depolymerisation of the marine bacterial exopolysaccharide HE800. Appl Microbiol Biotechnol 96:143–151. CrossRefPubMedGoogle Scholar
  137. 137.
    Fennouri A, Przybylski C, Pastoriza-Gallego M et al (2012) Single molecule detection of glycosaminoglycan hyaluronic acid oligosaccharides and depolymerization enzyme activity using a protein nanopore. ACS Nano 6:9672–9678PubMedCrossRefGoogle Scholar
  138. 138.
    Giannini EG, Mansi C, Dulbecco P, Savarino V (2006) Role of partially hydrolyzed guar gum in the treatment of irritable bowel syndrome. Nutrition 22:334–342PubMedCrossRefGoogle Scholar
  139. 139.
    Slavin JL, Greenberg NA (2003) Partially hydrolyzed guar gum: clinical nutrition uses. Nutrition 19:549–552PubMedCrossRefGoogle Scholar
  140. 140.
    Tayal A, Khan SA (2000) Degradation of a water-soluble polymer: molecular weight changes and chain scission characteristics. Macromolecules 33:9488–9493CrossRefGoogle Scholar
  141. 141.
    Cheng Y, Brown KM, Prud'homme RK (2002) Preparation and characterization of molecular weight fractions of guar galactomannans using acid and enzymatic hydrolysis. Int J Biol Macromol 31:29–35PubMedCrossRefGoogle Scholar
  142. 142.
    Cheng HN, Gu QM (2001) In: Wang PG, Bertozzi CR (eds) Glycochemistry: principles, synthesis, and applications. M Dekker, New York, pp 567–579CrossRefGoogle Scholar
  143. 143.
    Gu QM (1999) Enzyme-mediated reactions of oligosaccharides and polysaccharides. J Environ Polym Degrad 7:1–7CrossRefGoogle Scholar
  144. 144.
    Li J, Cheng HN, Nickol RG, Wang PG (1999) Enzymatic modification of hydroxyethylcellulose by transgalactosylation with β-galactosidases. Carbohydr Res 316:133–137PubMedCrossRefGoogle Scholar
  145. 145.
    Li J, Xie W, Cheng HN, Nickol RG, Wang PG (1999) Polycaprolactone-modified hydroxyethylcellulose films prepared by lipase-catalyzed ring-opening polymerization. Macromolecules 32:2789–2792CrossRefGoogle Scholar
  146. 146.
    Omagari Y, Matsuda S, Kaneko Y et al (2009) Chemoenzymatic synthesis of amylose-grafted cellulose. Macromol Biosci 9:450–455PubMedCrossRefGoogle Scholar
  147. 147.
    Cheng HN, Gu QM (2003) Enzyme-catalyzed reactions of polysaccharides. ACS Symp Ser 840:203–216CrossRefGoogle Scholar
  148. 148.
    Cheng HN, Gu QM (2000) Enzymatic modifications of water-soluble polymers. ACS Polym Prepr 41:1873–1874Google Scholar
  149. 149.
    Cheng HN, Gu QM, Nickol RG (2000) Amine-modified polymers, especially polysaccharides and pectins, and preparation thereof for improved gelation. U.S. Patent 6,159,721, 12 December 2000Google Scholar
  150. 150.
    Glass JE (ed) (2000) Associative Polymers in Aqueous Media. (ACS Symposium Series 765). American Chemical Society, Washington, DCGoogle Scholar
  151. 151.
    Cheng HN, Gu QM (2003) Esterified polysaccharide products with ketene dimer by beta-lactone ring opening. U.S. Patent 6,528,643, 4 March 2003Google Scholar
  152. 152.
    Qiao L, Gu QM, Cheng HN (2006) Enzyme-catalyzed synthesis of hydrophobically modified starch. Carbohydr Polym 66:135–140CrossRefGoogle Scholar
  153. 153.
    Gu QM (2000) Lipase-catalyzed grafting reactions on polysaccharides. ACS Polym Prepr 41(2):1834–1835Google Scholar
  154. 154.
    Yalpani M, Hall LD (1982) Some chemical and analytical aspects of polysaccharide modifications. II. A high yielding specific method for the chemical derivatization of galactose containing polysaccharides: oxidation with galactose oxidase followed by reductive amination. J Polym Sci Chem Ed 20:3339–3420CrossRefGoogle Scholar
  155. 155.
    Brady RL, Leibfried RL (2000) Use of oxidation promoting chemicals in the oxidation oxidizable galactose type of alcohol configuration containing polymer. US Patent 6,022,717, 8 Feb 2000Google Scholar
  156. 156.
    Brady RL, Leibfried RL, Nguyen TT (2001) Paper having improved strength characteristics and process for making same. US Patent 6,179,962, 30 January Jan 2001Google Scholar
  157. 157.
    Whitaker JR (1977) Enzymatic modification of proteins applicable to foods. ACS Adv Chem Ser 160:95–153CrossRefGoogle Scholar
  158. 158.
    Filice M, Aragon CC, Mateo C, Palomo JM (2017) Enzymatic transformations in food chemistry. Curr Org Chem 21:139–148CrossRefGoogle Scholar
  159. 159.
    Kumar R, Choudhary V, Mishra S, Varma IK (2004) Enzymatically modified soy protein. J Thermal Anal Calorimetry 75:727–738CrossRefGoogle Scholar
  160. 160.
    Panyam D, Kilara A (1996) Enhancing the functionality of food proteins by enzymatic modification. Trends Food Sci Technol 7:120–125CrossRefGoogle Scholar
  161. 161.
    Chobert JM, Briand L, Gueguen J et al (1996) Recent advances in enzymatic modifications of food proteins for improving their functional properties. Nahrung 40:177–182CrossRefGoogle Scholar
  162. 162.
    Bae IY, Kim JH, Lee HG (2013) Combined effect of protease and phytase on the solubility of modified soy protein. J Food Biochem 37:511–519Google Scholar
  163. 163.
    Zhang Y, Zhang X (2014) Study of improving functional properties of soybean protein isolate by combined modification. Shipin Yu Shengwu Jishu Xuebao 33:1031–1037Google Scholar
  164. 164.
    Onsaard E (2012) Sesame Proteins. Int Food Res J 19:1287–1295Google Scholar
  165. 165.
    Demirhan E, Ozbek B (2013) Influence of enzymatic hydrolysis on the functional properties of sesame cake protein. Chem Eng Commun 200:655–666CrossRefGoogle Scholar
  166. 166.
    Chatterjee R, Dey TK, Ghosh M et al (2015) Enzymatic modification of sesame seed protein, sourced from waste resource for nutraceutical application. Food Bioprod Processing 94:70–81CrossRefGoogle Scholar
  167. 167.
    Banach JC, Lin Z, Lamsal BP (2013) Enzymatic modification of milk protein concentrate and characterization of resulting functional properties. LWT- Food Sci Technol 54:397–403CrossRefGoogle Scholar
  168. 168.
    Raikos V (2014) Enzymatic hydrolysis of milk proteins as a tool for modification of fuctional properties at interfaces of emulsions and foams- A review. Curr Nutri Food Sci 10:134–140CrossRefGoogle Scholar
  169. 169.
    Mohan A, Udechukwu MC, Rajendran SRCK, Udenigwe CC (2015) Modification of peptide functionality during enzymatic hydrolysis of whey proteins. RSC Adv 5:97400–97407CrossRefGoogle Scholar
  170. 170.
    Abd El-Salam MH, El-Shibiny S (2017) Preparation, properties, and uses of enzymatic milk protein hydrolysates. Crit Rev Food Sci Nutr 57:119–1132CrossRefGoogle Scholar
  171. 171.
    Harish BR, Bhat GS (2004) Effect of enzymatic modification of proteins on physico- chemical characteristics of milk powder. J Food Sci Technol 41:333–335Google Scholar
  172. 172.
    Lin H-M, Deng S-G, Huang S-B (2014) Antioxidant activities of ferrous-chelating peptides isolated from five types of low-value fish protein hydrolysates. J Food Biochem 38:627–633Google Scholar
  173. 173.
    Chen Z, Li X, Lui Y et al (2012) Functional properties of enzymatically modified silver carp protein. Shipin Kexue (Beijing, China) 33:62–65Google Scholar
  174. 174.
    Pokora M, Eckert E, Zambrowics A et al (2013) Biological and functional properties and proteolytic enzyme-modified egg protein by-products. Food Sci Nutr 1:184–195PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Alashi AM, Blachard CL, Mailer RJ, Agboola SO (2013) Technological and bioactive functionalities of canola meal proteins and hydrolysates. Food Rev Int 29:231–260CrossRefGoogle Scholar
  176. 176.
    Martinez KD, Pilosof AMR (2017) Foaming behavior of enzymatically modified sunflower protein in proximity to pI. Biointerface Res Appl Chem 7:1883–1886Google Scholar
  177. 177.
    Chang Y-Y, Bi C-H, Wang L-J et al (2017) Effect of trypsin on antioxidant activity and gel-rheology of flaxseed protein. Int J Food Eng 13:20160168. CrossRefGoogle Scholar
  178. 178.
    Phongthai S, Lim S-T, Rawdkuen S (2016) Optimization of microwave-assisted extraction of rice bran protein and its hydrolysates properties. J Cereal Sci 70:146–154CrossRefGoogle Scholar
  179. 179.
    Chen JS, Wang SY, Deng ZY et al (2012) Effects of enzymatic hydrolysis of protein on the pasting properties of different types of wheat flour. J Food Sci 77:C546–C550PubMedCrossRefGoogle Scholar
  180. 180.
    Barac M, Cabrilo S, Stanojevic S et al (2012) Functional properties of protein hydrolysates from pea (Pisum sativum L) seeds. Int J Food Sci Technol 47:1457–1467CrossRefGoogle Scholar
  181. 181.
    Ribotta PD, Colombo A, Rosell CM (2012) Enzymatic modification of pea protein and its application in protein-cassava and corn starch gels. Food Hydrocoll 27:185–190CrossRefGoogle Scholar
  182. 182.
    Nesterenko A, Alric I, Silvestre F, Durrieu V (2012) Influence of soy proteins structural modifications on their microencapsulation properties: α-Tocopherol microparticle preparation. Food Res Int 48:387–396Google Scholar
  183. 183.
    Nesterenka A, Alric I, Violleau F et al (2013) a new way of valorizing biomaterials: The use of sunflower protein for α-tocopherol microencapsulation. Food Res Int 53:115–124CrossRefGoogle Scholar
  184. 184.
    Nesterenko A, Alric I, Violleau F et al (2014) The effect of vegetable protein modifications on the microencapsulation process. Food Hydrocoll 41:95–102CrossRefGoogle Scholar
  185. 185.
    Duan C, Yang L, Li A et al (2014) Effects of enzymatic hydrolysis on the allergenicity of whey protein concentrates. Iran J Allergy Asthma Immunol 13:231–239PubMedGoogle Scholar
  186. 186.
    Ambrosi V, Polenta G, Gonzalez C et al (2016) High hydrostatic pressure assisted enzymatic hydrolysis of whey proteins. Innov Food Sci Emerging Technol 38B:294–301CrossRefGoogle Scholar
  187. 187.
    Peksa A, Miedzianka J (2014) Amino acid composition of enzymatically hydrolyzed potato protein preparations. Czech J Food Sci 32:265–272CrossRefGoogle Scholar
  188. 188.
    Wang J, Su Y, Jia F, Jin H (2013) Characterization of casein hydrolysates derived from enzymatic hydrolysis. Chem Central J 7:62CrossRefGoogle Scholar
  189. 189.
    Ercili-Cura D (2012) Structure modification of milk protein gels by enzymatic cross-linking. VTT Sci 24:1–82Google Scholar
  190. 190.
    Niefar A, Saibi W, Bradai MN, Abdelmouleh A, Gargouri A (2012) Investigations of tyrosinase activity in melanin-free ink from Sepia officinalis: Potential for food proteins cross-linking. Euro Food Res Technol 235:611–618CrossRefGoogle Scholar
  191. 191.
    Mokoonlall A, Pfannstiel J, Struch M, Berger RG, Hinrichs J (2016) Structure modifications of stirred fermented milk gel due to laccase-catalyzed protein cross-linking in post-processing step. Innov Food Sci Emerging Technol 33:563–570Google Scholar
  192. 192.
    Gaspar A, Luisa C, de Goes-Favoni SP (2015) Action of microbial transglutaminase (MTGase) in the modification of food proteins: A review. Food Chem 171:315–322PubMedCrossRefGoogle Scholar
  193. 193.
    Romeih E, Walker G (2017) Recent advances on microbial transglutaminase and diary application. Trends Food Sci Technol 62:133–140CrossRefGoogle Scholar
  194. 194.
    Paramban R, Mundakka KR, Mann B, Koli PS (2016) Enzymatic modification of milk proteins for the preparation of low fat dahi. J Food Process Preserv 40:1038–1046CrossRefGoogle Scholar
  195. 195.
    Ridout MJ, Paananen A, Mamode A, Linder MB, Wilde PJ (2015) Interactions of transglutaminase with absorbed and spread films of β-casein and K-casein. Colloids Surf B 128:254–260CrossRefGoogle Scholar
  196. 196.
    Stangierski J, Rezler R, Lesierowski G (2014) Analysis of the effect of heating on rheological attributes of washed mechanically recovered chicken meat modified with transglutaminase. J Food Eng 141:13–19CrossRefGoogle Scholar
  197. 197.
    Stangierski J, Baranowska HM (2015) The influence of heating and cooling process of the water binding in transglutaminase-modified chicken protein preparation, assessed using low-field NMR. Food Bioprocess Technol 8:2359–2367CrossRefGoogle Scholar
  198. 198.
    Nivala O, Makinen OE, Kruus K, Nordlund E, Ercili-Cura D (2017) Structuring colloidal oat and faba bean protein particles via enzymatic modification. Food Chem 231:87–95PubMedCrossRefGoogle Scholar
  199. 199.
    Ribotta PD, Colombo A, Rosell CM (2012) Enzymatic modifications of pea protein and its applications in protein-cassava and corn starch gels. Food Hydrocoll 27:185–190CrossRefGoogle Scholar
  200. 200.
    Xiong L, Sun Q, Lui Y, Zhang L (2012) Modification of peanut isolate with transglutaminase. Zhongguo Lianqyou Xuebao 27:44–49Google Scholar
  201. 201.
    Jiang Z, Aneg S, Zhang C, Wu W (2013) Effect of transglutanminase and 4-hydroxy-3-methoxycinnamic acid on the properties of film from tilapia skin gelatin. Adv Mater Res (Durnten-Zurich, Switz) 781–784:623–627CrossRefGoogle Scholar
  202. 202.
    Luo Z-L, Zhao X-H (2015) Caseinate-gelatin and caseinate-hydrolyzed gelatin composites formed via transglutaminase: Chemical and functional properties. J Sci Food Agric 95:2981–2988Google Scholar
  203. 203.
    Zhang Y-N, Zhao X-H (2013) Study of functional properties of soybean protein isolate cross-linked with gelatin by microbial transglutaminase. Int J Food Prop 16:1257–1270CrossRefGoogle Scholar
  204. 204.
    Sheng WW, Zhao XH (2013) Functional properties of a cross-linked soy protein-gelatin composite towards limited tryptic digestion of two extents. J Sci Food Agric 93:3785–3791PubMedCrossRefGoogle Scholar
  205. 205.
    Chen Z, Shi X, Xu J et al (2016) Gel properties of SPI modified by enzymatic cross-linking during frozen storage. Food Hydrocoll 56:445–452CrossRefGoogle Scholar
  206. 206.
    Wang X, Xiong YL, Sato H et al (2016) Controlled cross-linking with glucose oxidase for the enhancement of gelling potential of pork myofibrillar protein. J Agric Food Chem 64:9523–9531PubMedCrossRefGoogle Scholar
  207. 207.
    Renzetti S, Rosell CM (2016) role of enzymes in improving the functionality of proteins in non-wheat dough systems. J Cereal Sci 67:35–45CrossRefGoogle Scholar
  208. 208.
    Manhivi VE, Amonsou EO, Kudanga T (2018) Laccase-mediated crosslinking of gluten-free amadumbe flour improves rheological properties. Food Chem 264:157–163PubMedCrossRefGoogle Scholar
  209. 209.
    Brzozowski B (2016) Immunoreactivity of wheat proteins modified by hydrolysis and polymerization. Euro Food Res Technol 242:1025–1040CrossRefGoogle Scholar
  210. 210.
    Stender EGP, Koutina G, Almdal K, Hassenkam T, Mackie A, Ipsen R, Svensson B (2018) Isoenergic modification of whey protein structure by denaturation and cross-linking using transglutaminase. Food Function 9:797–805PubMedCrossRefGoogle Scholar
  211. 211.
    Zadeh EM, O’Keefe SF, Kim Y-T, Cho J-H (2018) Evaluation of enzymatically modified soy protein isolate forming solution and film at different manufacturing conditions. J Food Sci 83:946–955CrossRefGoogle Scholar
  212. 212.
    Marks F (ed) (1996) Protein phosphorylation. VCH, New YorkGoogle Scholar
  213. 213.
    McLachlin DT, Chait BT (2001) Analysis of phosphorylated proteins and peptides by mass spectrometry. Curr Opinion Chem Biol 5:591–602CrossRefGoogle Scholar
  214. 214.
    Burnett G, Kennedy EP (1954) The enzymatic phosphorylation of proteins. J. Biol. Chem. 211:969–980PubMedGoogle Scholar
  215. 215.
    Bingham EW, Harold NP, Farrell M (1988) Phosphorylation of β-casein and α-lactalbumin by casein kinase from lactating bovine mammary gland. J Dairy Sci 71:324–336PubMedCrossRefGoogle Scholar
  216. 216.
    Ross LF, Bhatnagar D (1989) Enzymatic phosphorylation of soybean proteins. J Agric Food Chem 37:841–844CrossRefGoogle Scholar
  217. 217.
    Seguro K, Motoki M (1989) Enzymatic phosphorylation of soybean proteins by protein kinase. Agric Biol Chem 53:3263–3268Google Scholar
  218. 218.
    Seguro K, Motoki M (1990) Functional properties of enzymatically phosphorylated soybean proteins. Agric Biol Chem 54:1271–1274Google Scholar
  219. 219.
    Campbell NF, Shih FF, Marshall WE (1992) Enzymatic phosphorylation of soy protein isolate for improved functional properties. J Agric Food Chem 40:403–406CrossRefGoogle Scholar
  220. 220.
    Li P, Enomoto H, Hayashi Y et al (2010) Recent advances in phosphorylation of food proteins: A review. LWT – Food Sci Technol 43:1295–1300CrossRefGoogle Scholar
  221. 221.
    Winkler S, Wilson D, Kaplan DL (2000) Controlling β-sheet assembly in genetically engineered silk by enzymatic phosphorylation/dephosphorylation. Biochem 39:12739–12746CrossRefGoogle Scholar
  222. 222.
    Soltanizadeh N, Mirmoghtadaie L, Nejati F et al (2014) Solid-state protein–carbohydrate interactions and their application in the food industry. Compreh Rev Food Sci Food Safety 13:860–870CrossRefGoogle Scholar
  223. 223.
    Kato A (2002) Industrial applications of Maillard-type protein–polysaccharide conjugates. Food Sci Technol Res 8:193–199CrossRefGoogle Scholar
  224. 224.
    Deng Y, Wierenga PA, Schols HA et al (2017) Effect of Maillard induced glycation on protein hydrolysis by lysine/arginine and non-lysine/arginine specific proteases. Food Hydrocoll 69:210–219Google Scholar
  225. 225.
    Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12(4):43R–56RPubMedCrossRefGoogle Scholar
  226. 226.
    Pless DD, Lennarz WJ (1977) Enzymatic conversion of proteins to glycoproteins (lipid-linked saccharides/protein unfolding/oligosaccharide-lipid/Asn-X-Ser or Asn-X-Thr tripeptide/glycosyl transferase). Proc Natl Acad Sci USA 74:134–138PubMedCrossRefGoogle Scholar
  227. 227.
    Yan Y, Lennarz WJ (2004) Unraveling the mechanism of protein N-glycosylation. J Biol Chem 280:3121–3124PubMedCrossRefGoogle Scholar
  228. 228.
    Chen T, Embree HD, Wu LQ, Payne GF (2002) In vitro protein-polysaccharide conjugation: tyrosinase-catalyzed conjugation of gelatin and chitosan. Biopolymers 64:292–302PubMedCrossRefGoogle Scholar
  229. 229.
    Selinheimo E, Lampila P, Mattinen ML et al (2008) Formation of protein-oligosaccharide conjugates by laccase and tyrosinase. J Agric Food Chem 56:3118–3128PubMedCrossRefGoogle Scholar
  230. 230.
    Jiang SJ, Zhao XH (2010) Transglutaminase-induced cross-linking and glucosamine conjugation in soybean protein isolates and its impacts on some functional properties of the products. Eur Food Res Technol 231:679–689CrossRefGoogle Scholar
  231. 231.
    Song CL, Zhao XH (2014) Structure and property modification of an oligochitosan-glycosylated and crosslinked soybean protein generated by microbial transglutaminase. Food Chem 163:114–119PubMedCrossRefGoogle Scholar
  232. 232.
    Fu M, Zhao X-H (2017) Modified properties of glycated and cross-linked soy protein isolate by transglutaminase and an oligochitosan of 5 kDa. J Sci Food Agric 97:58–64PubMedCrossRefGoogle Scholar
  233. 233.
    Jiang SJ, Zhao XH (2012) Cross-linking and glucosamine conjugation of casein by transglutaminase and the emulsifying property and digestibility in vitro of the modified product. Int J Food Prop 15:1286–1299CrossRefGoogle Scholar
  234. 234.
    Song CL, Zhao XH (2013) Rheological, gelling and emulsifying properties of a glycosylated and cross-linked caseinate generated by transglutaminase. Int J Food Sci Technol 48:2595–2602CrossRefGoogle Scholar
  235. 235.
    Zhu CY, Wang XP, Zhao XH (2015) Property modification of caseinate responsible to transglutaminase-induced glycosylation and crosslinking in the presence of a degraded chitosan. Food Sci Biotechnol 24:843–850CrossRefGoogle Scholar
  236. 236.
    Hong PK, Gottardi D, Ndagijimana M et al (2014) Glycation and transglutaminase mediated glycosylation of fish gelatin peptides with glucosamine enhance bioactivity. Food Chem 142:285–293CrossRefGoogle Scholar
  237. 237.
    Hrynets Y, Ndagijimana M, Betti M et al (2014) Transglutaminase-catalyzed glycosylation of natural actomyosin (NAM) using glucosamine as amine donor: Functionality and gel microstructure. Food Hydrocoll 36:26–36CrossRefGoogle Scholar
  238. 238.
    Mary J, Vougier S, Picot CR et al (2004) Enzymatic reactions involved in the repair of oxidized proteins. Exp Gerontology 39:1117–1123CrossRefGoogle Scholar
  239. 239.
    Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316PubMedCrossRefGoogle Scholar
  240. 240.
    Davies MJ (2016) Protein oxidation and peroxidation. Biochem J 476:805–825CrossRefGoogle Scholar
  241. 241.
    Bornscheuer UT (2018) Enzymes in Lipid Modification. Ann Rev Food Sci Technol 9:85–103CrossRefGoogle Scholar
  242. 242.
    Zorn K, Oroz-Guinea I, Brundiek H, Bornscheuer UT (2016) Engineering and application of enzymes for lipid modification, an update. Prog Lipid Res 63:153–164PubMedCrossRefGoogle Scholar
  243. 243.
    Bornscheuer UT (2014) Enzymes in lipid modification: Past achievements and current trends. Eur J Lipid Sci Technol 116:1322–1331CrossRefGoogle Scholar
  244. 244.
    Hee KB, Akoh CC (2015) Recent research trends on the enzymatic synthesis of structured lipids. J Food Sci 80:C1713–C1724CrossRefGoogle Scholar
  245. 245.
    Kontkanen H, Rokka S, Kemppinen A (2011) Enzymatic and physical modification of mil fat: A review. Int Dairy J 21:3–13CrossRefGoogle Scholar
  246. 246.
    Bourlieu C, Bouhallab S, Lopez C (2009) Biocatalyzed modifications of milk lipids: applications and potentialities. Trends Food Sci Technol 20:458–469CrossRefGoogle Scholar
  247. 247.
    Hayes DG (2004) Enzyme-catalyzed modification of oilseed materials to produce eco-friendly products. J. Am Oil Chem Soc 81:1077–1103CrossRefGoogle Scholar
  248. 248.
    Gupta R, Pooja R, Sapna B (2003) Lipase mediated upgradation of dietary fats and oils. Crit Rev Food Sci Nutrition 43:635–644CrossRefGoogle Scholar
  249. 249.
    Gunstone FD (1999) Enzymes as biocatalysts in the modification of natural lipids. J Sci Food Agric 79:1535–1549CrossRefGoogle Scholar
  250. 250.
    Kim KR, Oh DK (2013) Production of hydroxy fatty acids by microbial fatty acid-hydroxylation enzymes. Biotechnol Adv 36:1473–1485CrossRefGoogle Scholar
  251. 251.
    Urlacher VB, Girhard M (2012) Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. Trends Biotechnol 30:26–36PubMedCrossRefGoogle Scholar
  252. 252.
    Eschenfeldt WH, Zhang Y, Samaha H et al (2003) Transformation of fatty acids catalyzed by cytochrome P450 monooxygenase enzymes of Candida tropicalis. Appl Environ Microbiol 69:5992–5999PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Ortega-Anaya J, Hernández-Santoyo A (2015) Functional characterization of a fatty acid double-bond hydratase from Lactobacillus plantarum and its interaction with biosynthetic membranes. Biochim Biophys Acta – Biomemb 1848:3166–3174CrossRefGoogle Scholar
  254. 254.
    Hirata A, Kishino S, Park SB et al (2015) A novel unsaturated fatty acid hydratase toward C16 to C22 fatty acids from Lactobacillus acidophilus. J Lipid Res 56(7):1340–1350PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    van de Loo FJ, Broun P, Turner S et al (1995) An oleate 12-hydroxylase from Ricinus communis L. is a fatty acyl desaturase homolog. Proc Natl Acad Sci USA 92:6743–6747PubMedCrossRefGoogle Scholar
  256. 256.
    Kaprakkaden A, Srivastava P, Bisaria VS (2017) In vitro synthesis of 9,10-dihydroxyhexadecanoic acid using recombinant Escherichia coli. Microb Cell Factories 16(85).
  257. 257.
    Brash AR (1999) Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem. 274:23679–23682PubMedCrossRefGoogle Scholar
  258. 258.
    Gardner HW (1996) Lipoxygenase as a versatile biocatalyst. J Am Oil Chem Soc 73:1347–1357CrossRefGoogle Scholar
  259. 259.
    Servi S (1999) Phospholipases as synthetic catalysts. Top Curr Chem 200:127–158CrossRefGoogle Scholar
  260. 260.
    Casado V, Martin D, Torres C, Reglero G (2012) Phospholipases in food industry: a review. In: Sandoval G (ed) Lipases and Phospholipases: Methods and Protocols. Springer, New York, pp 495–523CrossRefGoogle Scholar
  261. 261.
    Brundiek HB, Evitt AS, Kourist R, Bornscheuer UT (2012) Creation of a lipase highly selective for trans fatty acids by protein engineering. Angew Chem Int Ed 51:412–414CrossRefGoogle Scholar
  262. 262.
    Brundiek H, Padhi SK, Kourist R et al (2012) Altering the scissile fatty acid binding site of Candida antarctica lipase A by protein engineering for the selective hydrolysis of medium chain fatty acids. Eur J Lipid Sci Technol 112:1148–1153CrossRefGoogle Scholar
  263. 263.
    DiLorenzo M, Hidalgo A, Molina R et al (2007) Enhancement of the stability of a prolipase from Rhizopus oryzae toward aldehydes by saturation mutagenesis. Appl Environ Microbiol 73:7291–7299CrossRefGoogle Scholar
  264. 264.
    DiLorenzo M, Hidalgo A, Haas M et al (2005) Heterologous production of functional forms of Rhizopus oryzae lipase in Escherichia coli. Appl Environ Microbiol 71:8974–8977CrossRefGoogle Scholar
  265. 265.
    Lu W, Ness JE, Xie W (2010) Biosynthesis of monomers for plastics from renewable oils. J Am Chem Soc 132:15451–15455PubMedCrossRefGoogle Scholar
  266. 266.
    Liu C, Liu F, Cai J (2011) Polymers from fatty acids: Poly(ω-hydroxyl tetradecanoic acid) synthesis and physico-mechanical studies. Biomacromolecules 12:3291–3298PubMedCrossRefGoogle Scholar
  267. 267.
    de Gonzalo G, Colpa DI, Habib MHM et al (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119PubMedCrossRefGoogle Scholar
  268. 268.
    Pollegioni L, Tonin F, Rosini E (2015) Lignin-degrading enzymes. FEBS J 282:1190–1213PubMedCrossRefGoogle Scholar
  269. 269.
    Dashtban M, Schraft H, Syed TA et al (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1(1):36–50PubMedPubMedCentralGoogle Scholar
  270. 270.
    Li K (2003) The role of enzymes and mediators in white-rot fungal degradation of lignocellulose. ACS Symp Ser 845:196–209CrossRefGoogle Scholar
  271. 271.
    Fitigau IF, Boeriu CG, Peter F (2015) Enzymatic modification of different lignins through oxidative coupling with hydrophilic compounds. Macromol Symp 352:78–86CrossRefGoogle Scholar
  272. 272.
    Cañas AI, Camarero S (2010) Laccases and their natural mediators: Biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 28:694–705PubMedCrossRefGoogle Scholar
  273. 273.
    Munk L, Andersen ML, Meyer AS (2018) Influence of mediators on laccase catalyzed radical formation in lignin. Enzyme Microb Technol 116:48–56PubMedCrossRefGoogle Scholar
  274. 274.
    Munk L, Sitarz AK, Kalyani DC et al (2015) Can laccases catalyze bond cleavage in lignin? Biotechnol Adv 33:13–24PubMedCrossRefGoogle Scholar
  275. 275.
    Bilal M, Asgher M, Parra-Saldivar R et al (2017) Immobilized ligninolytic enzymes: An innovative and environmental responsive technology to tackle dye-based industrial pollutants – A review. Sci Total Environ 576:646–659PubMedCrossRefGoogle Scholar
  276. 276.
    Mate DM, Alcalde M (2015) Laccase engineering: From rational design to directed evolution. Biotechnol Adv 33:25–40PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • H. N. Cheng
    • 1
  1. 1.USDA Agricultural Research ServiceSouthern Regional Research CenterNew OrleansUSA

Personalised recommendations