Synthesis of Vinyl Polymers via Enzymatic Oxidative Polymerisation

  • W. Zhang
  • F. HollmannEmail author
Part of the Green Chemistry and Sustainable Technology book series (GCST)


Enzymatic methods for the polymerisation of vinyl monomers are presented and critically discussed. Vinyl monomers can be polymerised initiated by enzyme-catalysed radical formation. The most widely used initiators for this purpose are β-diketo compounds, which can be transformed into the corresponding radicals via peroxidase- or laccase-catalysed oxidation. For this, peroxidases use hydrogen peroxide as oxidant, while laccases rely on molecular oxygen. Both enzyme classes comprise specific advantages and disadvantages that are discussed in this chapter. Also, parameters to control the polymer properties are introduced and discussed.


Polymerisation of vinyl monomers Laccase Peroxidase Biocatalysis 


  1. 1.
    Torrelo G, Hanefeld U, Hollmann F (2015) Biocatalysis. Catal Lett 145(1):309–345CrossRefGoogle Scholar
  2. 2.
    Shoda S, Uyama H, Kadokawa J et al (2016) Enzymes as green catalysts for precision macromolecular synthesis. Chem Rev 116(4):2307–2413PubMedCrossRefGoogle Scholar
  3. 3.
    Kobayashi S, Makino A (2009) Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem Rev 109(11):5288–5353PubMedCrossRefGoogle Scholar
  4. 4.
    Hollmann F, Arends IWCE (2012) Enzyme initiated radical polymerizations. Polymers 4(1):759–793CrossRefGoogle Scholar
  5. 5.
    Hofrichter M, Ullrich R (2014) Oxidations catalyzed by fungal peroxygenases. Curr Opin Chem Biol 19(0):116–125PubMedCrossRefGoogle Scholar
  6. 6.
    Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24(5):219–226PubMedCrossRefGoogle Scholar
  7. 7.
    Rodríguez-Delgado MM, Alemán-Nava GS, Rodríguez-Delgado JM et al (2015) Laccase-based biosensors for detection of phenolic compounds. Trends Anal Chem 74:21–45CrossRefGoogle Scholar
  8. 8.
    Gross RA, Kumar A, Kalra B (2001) Polymer synthesis by in vitro enzyme catalysis. Chem Rev 101(7):2097–2124PubMedCrossRefGoogle Scholar
  9. 9.
    Durand A, Lalot T, Brigodiot M et al (2001) Enzyme-mediated radical initiation of acrylamide polymerization: main characteristics of molecular weight control. Polymer 42(13):5515–5521CrossRefGoogle Scholar
  10. 10.
    Hollmann F, Gumulya Y, Toelle C et al (2008) Evaluation of the laccase from Myceliophthora thermophila as industrial biocatalyst for polymerization reactions. Macromolecules 41(22):8520–8524CrossRefGoogle Scholar
  11. 11.
    Valderrama B, Ayala M, Vazquez-Duhalt R (2002) Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes. Chem Biol 9(5):555–565PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang W, Fernández-Fueyo E, Ni Y et al (2018) Selective aerobic oxidation reactions using a combination of photocatalytic water oxidation and enzymatic oxyfunctionalizations. Nat Catal 1:55–62PubMedCrossRefGoogle Scholar
  13. 13.
    Gomez de Santos P, Canellas M, Tieves F et al (2018) Selective synthesis of the human drug metabolite 5′-hydroxypropranolol by an evolved self-sufficient peroxygenase. ACS Catal 8(6):4789–4799CrossRefGoogle Scholar
  14. 14.
    Zhang W, Burek BO, Fernández-Fueyo E et al (2017) Selective activation of C-H bonds by cascading photochemistry with biocatalysis. Angew Chem Int Ed 56(48):15451–15455CrossRefGoogle Scholar
  15. 15.
    Ni Y, Fernández-Fueyo E, Baraibar AG et al (2016) Peroxygenase-catalyzed oxyfunctionalization reactions promoted by the complete oxidation of methanol. Angew Chem Int Ed 55:798–801CrossRefGoogle Scholar
  16. 16.
    Paul CE, Churakova E, Maurits E et al (2014) In situ formation of H2O2 for P450 peroxygenases. Bioorg Med Chem 22(20):5692–5696PubMedCrossRefGoogle Scholar
  17. 17.
    Churakova E, Kluge M, Ullrich R et al (2011) Specific photobiocatalytic oxyfunctionalization reactions. Angew Chem Int Ed 50(45):10716–10719CrossRefGoogle Scholar
  18. 18.
    Perez DI, Mifsud Grau M, Arends IWCE et al (2009) Visible light-driven and chloroperoxidase-catalyzed oxygenation reactions. Chem Commun 44:6848–6850CrossRefGoogle Scholar
  19. 19.
    Zavada S, Battsengel T, Scott T (2016) Radical-mediated enzymatic polymerizations. Int J Mol Sci 17(2):195PubMedCentralCrossRefGoogle Scholar
  20. 20.
    Zavada SR, McHardy NR, Scott TF (2014) Oxygen-mediated enzymatic polymerization of thiol-ene hydrogels. J Mater Chem B 2(17):2598–2605PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Chapman R, Gormley Adam J, Stenzel Martina H et al (2016) Combinatorial low-volume synthesis of well-defined polymers by enzyme degassing. Angew Chem Int Ed 55(14):4500–4503CrossRefGoogle Scholar
  22. 22.
    Chapman R, Gormley AJ, Herpoldt K-L et al (2014) Highly controlled open vessel RAFT polymerizations by enzyme degassing. Macromolecules 47(24):8541–8547CrossRefGoogle Scholar
  23. 23.
    Baader WJ, Bohne C, Cilento G et al (1985) Peroxidase-catalyzed formation of triplet acetone and chemiluminescence from isobutyraldehyde and molecular oxygen. J Biol Chem 260(18):10217–10225PubMedGoogle Scholar
  24. 24.
    Chang A, Scheer M, Grote A et al (2009) BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009. Nucleic Acids Res 37:D588–D592PubMedCrossRefGoogle Scholar
  25. 25.
    Singh A, Ma D, Kaplan DL (2000) Enzyme-mediated free radical polymerization of styrene. Biomacromolecules 1(4):592–596PubMedCrossRefGoogle Scholar
  26. 26.
    Teixeira D, Lalot T, Brigodiot M et al (1999) ß-Diketones as key compounds in free-radical polymerization by enzyme-mediated initiation. Macromolecules 32(1):70–72CrossRefGoogle Scholar
  27. 27.
    Parravano G (1951) Chain reactions induced by Enzymic systems. J Am Chem Soc 73(1):183–184CrossRefGoogle Scholar
  28. 28.
    Derango R, Chiang L-C, Dowbenko R et al (1992) Enzyme-mediated polymerization of acrylic monomers. Biotechnol Tech 6(6):523–526CrossRefGoogle Scholar
  29. 29.
    Emery O, Lalot T, Brigodiot M et al (1997) Free-radical polymerization of acrylamide by horseradish peroxidase-mediated initiation. J Polymer Sci A: Polymer Chem 35(15):3331–3333Google Scholar
  30. 30.
    Kalra B, Gross RA (2000) Horseradish peroxidase mediated free radical polymerization of methyl methacrylate. Biomacromolecules 1(3):501–505PubMedCrossRefGoogle Scholar
  31. 31.
    Qi GG, Jones CW, Schork FJ (2006) Enzyme-initiated miniemulsion polymerization. Biomacromolecules 7(11):2927–2930PubMedCrossRefGoogle Scholar
  32. 32.
    Shan J, Kitamura Y, Yoshizawa H (2005) Emulsion polymerization of styrene by horseradish peroxidase-mediated initiation. Coll Polym Sci 284(1):108–111CrossRefGoogle Scholar
  33. 33.
    Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilisation. Chem Soc Rev 38(2):453–468PubMedCrossRefGoogle Scholar
  34. 34.
    Iyer PV, Ananthanarayan L (2008) Enzyme stability and stabilization–Aqueous and non-aqueous environment. Process Biochem 43(10):1019–1032CrossRefGoogle Scholar
  35. 35.
    Zhao Q, Sun JZ, Ren H et al (2008) Horseradish peroxidase immobilized in macroporous hydrogel for acrylamide polymerization. J Polym Sci Pol Chem 46(6):2222–2232CrossRefGoogle Scholar
  36. 36.
    Fernández-Fueyo E, Ni Y, Gomez Baraibar A et al (2016) Towards preparative peroxygenase-catalyzed oxyfunctionalization reactions in organic media. J Mol Catal B Enzym 134:347–352CrossRefGoogle Scholar
  37. 37.
    Dordick JS, Marletta MA, Klibanov AM (1987) Polymerization of phenols catalyzed by peroxidase in nonaqueous media. Biotechnol Bioeng 30(1):31–36PubMedCrossRefGoogle Scholar
  38. 38.
    Zaks A, Klibanov AM (1985) Enzyme-catalyzed processes in organic solvents. Proc Natl Acad Sci U S A 82(10):3192–3196PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Zaks A, Klibanov AM (1984) Enzymatic catalysis in organic media at 100°C. Science 224(4654):1249–1251PubMedCrossRefGoogle Scholar
  40. 40.
    Klibanov AM, Berman Z, Alberti BN (1981) Preparative hydroxylation of aromatic compounds catalyzed by peroxidase. J Am Chem Soc 103(20):6263–6264CrossRefGoogle Scholar
  41. 41.
    Kreuzer LP, Männel MJ, Schubert J et al (2017) Enzymatic catalysis at nanoscale: enzyme-coated nanoparticles as colloidal biocatalysts for polymerization reactions. ACS Omega 2(10):7305–7312PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Angerer PS, Studer A, Witholt B et al (2005) Oxidative polymerization of a substituted phenol with ion-paired horseradish peroxidase in an organic solvent. Macromolecules 38(15):6248–6250CrossRefGoogle Scholar
  43. 43.
    Kohri M, Uzawa S, Kobayashi A et al (2013) Enzymatic emulsifier-free emulsion polymerization to prepare polystyrene particles using horseradish peroxidase as a catalyst. Polymer J 45(3):354–358CrossRefGoogle Scholar
  44. 44.
    Kohri M (2014) Development of HRP-mediated enzymatic polymerization under heterogeneous conditions for the preparation of functional particles. Polymer J 46(7):373–380CrossRefGoogle Scholar
  45. 45.
    Singh A, Roy S, Samuelson L et al (2001) Peroxidase, hematin, and Pegylated-Hematin catalyzed vinyl polymerizations in water. J Macromol Sci A 38(12):1219–1230CrossRefGoogle Scholar
  46. 46.
    Sanchez-Leija RJ, Torres-Lubian JR, Resendiz-Rubio A et al (2016) Enzyme-mediated free radical polymerization of acrylamide in deep eutectic solvents. RSC Adv 6(16):13072–13079CrossRefGoogle Scholar
  47. 47.
    Villarroya S, Thurecht KJ, Howdle SM (2008) HRP-mediated inverse emulsion polymerisation of acrylamide in supercritical carbon dioxide. Green Chem 10(8):863–867CrossRefGoogle Scholar
  48. 48.
    Durand A, Lalot T, Brigodiot M et al (2000) Enzyme-mediated initiation of acrylamide polymerization: reaction mechanism. Polymer 41(23):8183–8192CrossRefGoogle Scholar
  49. 49.
    Lalot T, Brigodiot M, Maréchal E (1999) A kinetic approach to acrylamide radical polymerization by horse radish peroxidase-mediated initiation. Polymer Int 48(4):288–292CrossRefGoogle Scholar
  50. 50.
    Kalra B, Gross RA (2002) HRP-mediated polymerizations of acrylamide and sodium acrylate. Green Chem 4:174–178CrossRefGoogle Scholar
  51. 51.
    Bao S, Wu D, Su T et al (2015) Microgels formed by enzyme-mediated polymerization in reverse micelles with tunable activity and high stability. RSC Adv 5(55):44342–44345CrossRefGoogle Scholar
  52. 52.
    Singh A, Kaplan DL (2004) Vitamin C functionalized poly(methyl methacrylate) for free radical scavenging. J Macromol Sci A 41(12):1377–1386CrossRefGoogle Scholar
  53. 53.
    Ikeda R, Tanaka H, Uyama H et al (1998) Laccase-catalyzed polymerization of acrylamide. Macromol Rapid Commun 19(8):423–425CrossRefGoogle Scholar
  54. 54.
    Fodor C, Gajewska B, Rifaie-Graham O et al (2016) Laccase-catalyzed controlled radical polymerization of N-vinylimidazole. Polym Chem 7(43):6617–6625CrossRefGoogle Scholar
  55. 55.
    Shogren RL, Willett JL, Biswas A (2009) HRP-mediated synthesis of starch-polyacrylamide graft copolymers. Carbohyd Polym 75(1):189–191CrossRefGoogle Scholar
  56. 56.
    Wang S, Wang Q, Fan X et al (2016) Synthesis and characterization of starch-poly(methyl acrylate) graft copolymers using horseradish peroxidase. Carbohydr Polym 136:1010–1016PubMedCrossRefGoogle Scholar
  57. 57.
    Wang S, Xu J, Wang Q et al (2017) Preparation and rheological properties of starch-g-poly(butyl acrylate) catalyzed by horseradish peroxidase. Process Biochem 59:104–110CrossRefGoogle Scholar
  58. 58.
    Karaki N, Aljawish A, Humeau C et al (2016) Enzymatic modification of polysaccharides: Mechanisins, properties, and potential applications: a review. Enz Microb Technol 90:1–18CrossRefGoogle Scholar
  59. 59.
    Qiao L, Wang X, Gao Y et al (2016) Laccase-mediated formation of mesoporous silica nanoparticle based redox stimuli-responsive hybrid nanogels as a multifunctional nanotheranostic agent. Nanoscale 8(39):17241–17249PubMedCrossRefGoogle Scholar
  60. 60.
    Fukushima H, Kohri M, Kojima T et al (2012) Surface-initiated enzymatic vinyl polymerization: synthesis of polymer-grafted silica particles using horseradish peroxidase as catalyst. Polym Chem 3(5):1123–1125CrossRefGoogle Scholar
  61. 61.
    Munk L, Punt AM, Kabel MA et al (2017) Laccase catalyzed grafting of -N-OH type mediators to lignin via radical-radical coupling. RSC Adv 7(6):3358–3368CrossRefGoogle Scholar
  62. 62.
    Mai C, Milstein O, Hüttermann A (2000) Chemoenzymatical grafting of acrylamide onto lignin. J Biotechnol 79(2):173–183PubMedCrossRefGoogle Scholar
  63. 63.
    Mai C, Milstein O, Hüttermann A (1999) Fungal laccase grafts acrylamide onto lignin in presence of peroxides. Appl Microbiol Biotechnol 51(4):527–531CrossRefGoogle Scholar
  64. 64.
    Witayakran S, Ragauskas AJ (2009) Modification of high-lignin softwood kraft pulp with laccase and amino acids. Enz Microb Technol 44(3):176–181CrossRefGoogle Scholar
  65. 65.
    Gillgren T, Hedenström M, Jönsson LJ (2017) Comparison of laccase-catalyzed cross-linking of organosolv lignin and lignosulfonates. Int J Biol Macromol 105:438–446PubMedCrossRefGoogle Scholar
  66. 66.
    Yu C, Wang F, Fu S et al (2017) Laccase-assisted grafting of acrylic acid onto lignin for its recovery from wastewater. J Polymers Environ 25(4):1072–1079CrossRefGoogle Scholar
  67. 67.
    Dong A, Yuan J, Wang Q et al (2014) Modification of jute fabric via laccase/t-BHP-mediated graft polymerization with acrylamide. J Appl Poly Sci 131(12)Google Scholar
  68. 68.
    Sun H, Huang W, Yang H et al (2016) Co-immobilization of laccase and mediator through a self-initiated one-pot process for enhanced conversion of malachite green. J Colloid Interface Sci 471:20–28PubMedCrossRefGoogle Scholar
  69. 69.
    Renggli K, Sauter N, Rother M et al (2017) Biocatalytic atom transfer radical polymerization in a protein cage nanoreactor. Polym Chem 8(14):2133–2136CrossRefGoogle Scholar
  70. 70.
    Zhang B, Wang X, Zhu A et al (2015) Enzyme-initiated reversible addition–fragmentation chain transfer polymerization. Macromolecules 48(21):7792–7802CrossRefGoogle Scholar
  71. 71.
    Martínez AT, Ruiz-Dueñas FJ, Camarero S et al (2017) Oxidoreductases on their way to industrial biotransformations. Biotechnol Adv 35:815–831PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands

Personalised recommendations