• Shiro KobayashiEmail author
  • Hiroshi Uyama
  • Jun-ichi Kadokawa
Part of the Green Chemistry and Sustainable Technology book series (GCST)


This chapter provides introductory aspects to the readers so that they may understand readily and clearly the significance of the book edition. It is important for polymer chemists to know the present status of “enzymatic polymerization” and “green polymer chemistry.” The former involves its historical background and characteristics including enzymatic reaction mechanism. The latter is related with several important “green” aspects, toward which the former is expected to contribute. Brief abstracts of all the chapters are also given for the easier understanding of the whole book.


Enzymatic polymerization Green polymer chemistry Enzymatic reaction mechanism Reaction selectivity Sustainable society Bio-based materials Polymer recycling 


  1. 1.
    Payen A, Persoz J-F (1833) Memoir on diastase, the principal products of its reaction, and their application to the industrial arts. Ann Chim Phys 2nd Ser 53:73–92Google Scholar
  2. 2.
    Sym EA (1936) A method for enzymatic ester synthesis. Enzymologia 1:156–160Google Scholar
  3. 3.
    Jones JB (1986) Enzymes in organic-synthesis. Tetrahedron 42:3351–3403CrossRefGoogle Scholar
  4. 4.
    Klibanov AM (1990) Asymmetric transformations catalyzed by enzymes in organic-solvents. Acc Chem Res 23:114–120CrossRefGoogle Scholar
  5. 5.
    Wong CH, Whitesides GMP (1994) Enzymes in synthetic organic chemistry. Pergamon, OxfordGoogle Scholar
  6. 6.
    Kobayashi S, Shoda S, Uyama H (1995) Enzymatic polymerization and oligomerization. Adv Polym Sci 121:1–30CrossRefGoogle Scholar
  7. 7.
    Kobayashi S, Uyama H, Kimura S (2001) Enzymatic polymerization. Chem Rev 101:3793–3818CrossRefGoogle Scholar
  8. 8.
    Kobayashi S, Shoda S, Uyama H (1996) Enzymatic polymerization. In: Salamone JC (ed) Polymeric materials encyclopedia. CRC Press Inc, Boca Raton, pp 2102–2107Google Scholar
  9. 9.
    Kobayashi S, Shoda S, Uyama H (1997) Enzymatic catalysis. In: Kobayashi S (ed) Catalysis in precision polymerization. Wiley, Chichester, pp 417–441Google Scholar
  10. 10.
    Kobayashi S (1999) Enzymatic polymerization: a new method of polymer synthesis. J Polym Sci Polym Chem 37:3041–3056CrossRefGoogle Scholar
  11. 11.
    Kobayashi S, Uyama H (1999) Biocatalytical routes to polymers. In: Schlueter AD (ed) Material science and technology-synthesis of polymers, vol 54. Wiley-VCH, Weinheim, pp 549–569Google Scholar
  12. 12.
    Kobayashi S, Uyama H, Ohmae M (2001) Enzymatic polymerization for precision polymer synthesis. Bull Chem Soc Jpn 74:613–635CrossRefGoogle Scholar
  13. 13.
    Gross RA, Kumar A, Kalra B (2001) Polymer synthesis by in vitro enzyme catalysis. Chem Rev 101:2097–2124CrossRefGoogle Scholar
  14. 14.
    Kobayashi S, Uyama H (2002) Enzymatic polymerization to polyesters. In: Doi Y, Steinbüchel A (eds) Handbook of biopolymers, polyesters I, vol 3a. Wiley-VCH, Weinheim, pp 373–400Google Scholar
  15. 15.
    Kobayashi S, Uyama H (2003) Enzymatic polymerization. In: Kroschwitz JI (ed) Encyclopedia of polymer science and technology, 3rd edn. Wiley, New York, pp 328–364Google Scholar
  16. 16.
    Cheng HN, Gross RA (eds) (2005) Polymer biocatalysis and biomaterials. ACS symposium series 900. American Chemical Society, Washington, DCGoogle Scholar
  17. 17.
    Kobayashi S, Ritter H, Kaplan D (eds) (2006) Enzyme-catalyzed synthesis of polymers. Advances in polymer science, vol 194. Springer, BerlinGoogle Scholar
  18. 18.
    Kobayashi S, Makino A (2009) Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem Rev 109:5288–5353CrossRefGoogle Scholar
  19. 19.
    Kobayashi S (2010) Lipase-catalyzed polyester synthesis – a green polymer chemistry. Proc Jpn Acad Ser B 86:338–365CrossRefGoogle Scholar
  20. 20.
    Kadokawa J, Kobayashi S (2010) Polymer synthesis by enzymatic catalysis. Curr Opin Chem Biol 14:145–153CrossRefGoogle Scholar
  21. 21.
    Cheng HN, Gross RA (eds) (2010) Green polymer chemistry: biocatalysis and biomaterials. ACS symposium series 1043. American Chemical Society, Washington, DCGoogle Scholar
  22. 22.
    Palmans ARA, Heise A, Guebitz GM (eds) (2010) Enzymatic polymerisation, Advances in polymer science, vol 237. Springer, BerlinGoogle Scholar
  23. 23.
    Loos K (ed) (2011) Biocatalysis in polymer chemistry. Wiley-VCH, WeinheimGoogle Scholar
  24. 24.
    Kadokawa J (2011) Precision polysaccharide synthesis catalyzed by enzymes. Chem Rev 111:4308–4345CrossRefGoogle Scholar
  25. 25.
    Kobayashi S (2012) Enzymatic polymerization. In: Matyjaszewski K, Moeller M (eds) Polymer science: a comprehensive reference, vol 5. Elsevier, Amsterdam, pp 217–237CrossRefGoogle Scholar
  26. 26.
    Kobayashi S (2013) Green polymer chemistry: recent developments. Adv Polym Sci 262:141–166CrossRefGoogle Scholar
  27. 27.
    Kobayashi S (2014) Enzymatic polymerization. In: Seidel A (ed) Encyclopedia of polymer science and technology, 4th edn. Wiley, Hoboken, pp 221–292Google Scholar
  28. 28.
    Cheng HN, Gross RA, Smith PB (eds) (2015) Green polymer chemistry: bio-based materials and biocatalysis. ACS symposium series 1192. American Chemical Society, Washington, DCGoogle Scholar
  29. 29.
    Shoda S, Kobayashi A, Kobayashi S (2015) Production of polymers by white biotechnology. In: Coelho MAZ, Ribeiro BD (eds) White biotechnology for sustainable chemistry. Royal Society of Chemistry, Cambridge, pp 274–309CrossRefGoogle Scholar
  30. 30.
    Shoda S, Uyama H, Kadokawa J et al (2016) Enzymes as green catalysts for precision macromolecular synthesis. Chem Rev 116:2307–2413CrossRefGoogle Scholar
  31. 31.
    Staudinger H, Johner H, Singer R et al (1927) Polymerized formaldehyde, a model of cellulose. Z Phys Chem 126:425–448Google Scholar
  32. 32.
    Percec V (ed) (2013) Special issues on “hierarchical macromolecular structures: 60 years after the staudinger nobel prize”, Advances in polymer science, vol 261/262. Springer, Cham/New YorkGoogle Scholar
  33. 33.
    Taylor HS, Jones WH (1930) The thermal decomposition of metal alkyls in hydrogen-ethylene mixtures. J Am Chem Soc 52:1111–1121CrossRefGoogle Scholar
  34. 34.
    Carothers WH (1931) Polymerization. Chem Rev 8:353–426CrossRefGoogle Scholar
  35. 35.
    Meerwein H (1955) Organic ionic reactions. Angew Chem 67:374–380CrossRefGoogle Scholar
  36. 36.
    Williams G (1940) Kinetics of the catalyzed polymerization of styrene. III. The mechanism of the metal chloride catalysis. J Chem Soc:775–789Google Scholar
  37. 37.
    Ziegler K, Holzkamp E, Breil H et al (1955) The mulheim normal pressure polyethylene process. Angew Chem Int Ed 67:541–547CrossRefGoogle Scholar
  38. 38.
    Natta G, Pino P, Corradini P et al (1955) Crystalline high polymers of α-olefins. J Am Chem Soc 77:1708–1710CrossRefGoogle Scholar
  39. 39.
    Boor J (1979) Ziegler-Natta catalysts and polymerizations. Academic Press, New YorkGoogle Scholar
  40. 40.
    Szwarc M (1956) Living polymers. Nature 178:1168–1169CrossRefGoogle Scholar
  41. 41.
    Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154CrossRefGoogle Scholar
  42. 42.
    Lehn JM (2002) Supramolecular polymer chemistry- scope and perspectives. Polym Int 51:825–839CrossRefGoogle Scholar
  43. 43.
    Shirakawa H, Louis EJ, Macdiarmid AG et al (1977) Synthesis of electrically conducting organic polymers – halogen derivatives of polyacetylene, (CH)X. J Chem Soc Chem Commun:578–580Google Scholar
  44. 44.
    Trnka TM, Grubbs RH (2001) The development of L2X2Ru = CHR olefin metathesis catalysts: an organometallic success story. Acc Chem Res 34:18–29CrossRefGoogle Scholar
  45. 45.
    Schrock RR (2002) High oxidation state multiple metal-carbon bonds. Chem Rev 102:145–179CrossRefGoogle Scholar
  46. 46.
    International union of biochemistry and molecular biology. Nomenclature committee., Webb EC (1992) Enzyme nomenclature 1992: recommendations of the nomenclature committee of the international union of biochemistry and molecular biology on the nomenclature and classification of enzymes. Published for the International Union of Biochemistry and Molecular Biology by Academic Press, San DiegoGoogle Scholar
  47. 47.
    Jiang Y, Loos K (2016) Enzymatic synthesis of bio-based polyesters and polyamides. Polymers 8:243. CrossRefPubMedCentralGoogle Scholar
  48. 48.
    Fischer E (1894) Einfluss der Configuration auf die Wirkung der Enzyme. Ber Dtsch Chem Ges 27:2985–2993CrossRefGoogle Scholar
  49. 49.
    Pauling L (1946) Molecular architecture and biological reactions. Chem Eng News 24:1375–1377CrossRefGoogle Scholar
  50. 50.
    Kollman PA, Kuhn B, Donini O et al (2001) Elucidating the nature of enzyme catalysis utilizing a new twist on an old methodology: quantum mechanical – free energy calculations on chemical reactions in enzymes and in aqueous solution. Acc Chem Res 34:72–79CrossRefGoogle Scholar
  51. 51.
    Borman S (2004) Much ado about enzyme mechanisms. Chem Eng News 82:35–39CrossRefGoogle Scholar
  52. 52.
    Alberts B, Bray D, Lewis J et al (1994, Chapter 3) Molecular biology of the cell, 3rd edn. Newton Press, New YorkGoogle Scholar
  53. 53.
    Lerner RA, Benkovic SJ, Schultz PG (1991) At the crossroads of chemistry and immunology – catalytic antibodies. Science 252:659–667CrossRefGoogle Scholar
  54. 54.
    Kobayashi S, Kiyosada T, Shoda S (1996) Synthesis of artificial chitin: irreversible catalytic behavior of a glycosyl hydrolase through a transition state analogue substrate. J Am Chem Soc 118:13113–13114CrossRefGoogle Scholar
  55. 55.
    Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, OxfordGoogle Scholar
  56. 56.
    Kobayashi S (1999) Enzymatic polymerization: synthesis of artificial macromolecules catalyzed by natural macromolecules. High Polym Jpn 48:124–127Google Scholar
  57. 57.
    Puskas JE, Sen MY, Seo KS (2009) Green polymer chemistry using nature’s catalysts, enzymes. J Polym Sci Polym Chem 47:2959–2976CrossRefGoogle Scholar
  58. 58.
    Gandini A (2011) The irruption of polymers from renewable resources on the scene of macromolecular science and technology. Green Chem 13:1061–1083CrossRefGoogle Scholar
  59. 59.
    Kobayashi S (2015) Enzymatic ring-opening polymerization and polycondensation for the green synthesis of polyesters. Polym Adv Technol 26:677–686CrossRefGoogle Scholar
  60. 60.
    Kobayashi S (2017) Green polymer chemistry: new methods of polymer synthesis using renewable starting materials. Struct Chem 28:461–474CrossRefGoogle Scholar
  61. 61.
    Lee JH, Brown RM, Kuga S et al (1994) Assembly of synthetic cellulose-I. Proc Natl Acad Sci U S A 91:7425–7429CrossRefGoogle Scholar
  62. 62.
    Kobayashi S, Okamoto E, Wen X et al (1996) Chemical synthesis of native-type cellulose and its analogues via enzymatic polymerization. J Macromol Sci Pure Appl Chem A33:1375–1384CrossRefGoogle Scholar
  63. 63.
    Kobayashi S, Shoda S, Wen X et al (1997) Choroselective enzymatic polymerization for synthesis of natural polysaccharides. J Macromol Sci Pure Appl Chem A34:2135–2142CrossRefGoogle Scholar
  64. 64.
    Kobayashi S, Uyama H, Takamoto T (2000) Lipase-catalyzed degradation of polyesters in organic solvents, a new methodology of polymer recycling using enzyme as catalyst. Biomacromolecules 1:3–5CrossRefGoogle Scholar
  65. 65.
    Ebata H, Toshima K, Matsumura S (2000) Lipase-catalyzed transformation of poly(e-caprolactone) into cyclic dicaprolactone. Biomacromolecules 1:511–514CrossRefGoogle Scholar
  66. 66.
    Takahashi Y, Okajima S, Toshima K et al (2004) Lipase-catalyzed transformation of poly(lactic acid) into cyclic oligomers. Macromol Biosci 4:346–353CrossRefGoogle Scholar
  67. 67.
    Osanai Y, Toshima K, Matsumura S (2003) Enzymatic degradation of poly(R,S-3-hydroxybutanoate) to cyclic oligomers under continuous flow. Green Chem 5:567–570CrossRefGoogle Scholar
  68. 68.
    Numata K, Srivastava RK, Finne-Wistrand A et al (2007) Branched poly(lactide) synthesized by enzymatic polymerization: effects of molecular branches and stereochernistry on enzymatic degradation and alkaline hydrolysis. Biomacromolecules 8:3115–3125CrossRefGoogle Scholar
  69. 69.
    Shirke AN, White C, Englaender JA et al (2018) Stabilizing leaf and branch compost cutinase (LCC) with glycosylation: mechanism and effect on PET hydrolysis. Biochemistry 57:1190–1200CrossRefGoogle Scholar
  70. 70.
    Igarashi K, Uchihashi T, Koivula A et al (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333:1279–1282CrossRefGoogle Scholar
  71. 71.
    Igarashi K, Uchihashi T, Uchiyama T et al (2014) Two-way traffic of glycoside hydrolase family 18 processive chitinases on crystalline chitin. Nat Commun 5:3975CrossRefGoogle Scholar
  72. 72.
    Negoro S, Shibata N, Tanaka Y et al (2012) Three-dimensional structure of nylon hydrolase and mechanism of nylon-6 hydrolysis. J Biol Chem 287:5079–5090CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shiro Kobayashi
    • 1
    Email author
  • Hiroshi Uyama
    • 2
  • Jun-ichi Kadokawa
    • 3
  1. 1.Kyoto University, Yoshida-honmachi, Sakyo-kuKyotoJapan
  2. 2.Department of Applied Chemistry, Graduate School of EngineeringOsaka UniversitySuitaJapan
  3. 3.Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and EngineeringKagoshima UniversityKagoshimaJapan

Personalised recommendations