Skip to main content

Plant-Based Chemicals Extraction and Isolation

  • Chapter
  • First Online:
Book cover Plant Based “Green Chemistry 2.0”

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Plants represent a huge reservoir of bioactive molecules that are still little explored. Modern science is now focused on identifying the beneficial compounds from these sources to be used in pharmaceutical drugs. The search for new bioactive natural molecules is based on the choice of extraction, separation and structural identification techniques. This chapter provides a brief review of the specificity and usefulness of the most popular extraction methods in the phytochemistry field. In addition, this study describes the development of chromatographic separation and structural elucidation techniques of secondary metabolites, including analytical and preparative chromatography, mass spectrometry (MS), one- (1D) and two-dimensional (2D) Nuclear magnetic resonance (NMR) experiences. Today, the immense progress of these techniques has enabled chemists, biologists and pharmacists to discover bioactive molecules that have found applications in drug and food industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levey M (1959) Chemistry and chemical technology in ancient Mesopotamia. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  2. Barnes J, Anderson LA et al (2007) Herbal Medicines. A guide for Healthcare Professionals, 3rd edn. Pharmaceutical Press, London, pp 1–23

    Google Scholar 

  3. Rocha LG, Almeida J et al (2005) A review of natural products with antileishmanial activity. Phytomed 12:514–535

    Article  CAS  Google Scholar 

  4. Balandrian MFJ, Kjoke A et al (1985) Natural plant chemicals: source of industrial and medicinal materials. Sci J 228:1154–1160

    Google Scholar 

  5. Sticher O (2008) Natural product isolation. Nat Prod Rep 25:517–554

    Article  CAS  PubMed  Google Scholar 

  6. Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Mol 15:7313–7352

    Article  CAS  Google Scholar 

  7. Evans WC (2002) General methods associated with the phytochemical investigation of herbal products. In Trease and Evans Pharmacognosy, 15 edn. New Delhi: Saunders (Elsevier), pp 137–148

    Chapter  Google Scholar 

  8. Borhan MZ, Ahmad R et al (2013) Impact of nanopowders on extraction yield of Centellaasiatica. Adv Mater Res 667:246–250

    Article  CAS  Google Scholar 

  9. Arya V, Thakur NM et al (2012) Preliminary phytochemical analysis of the extracts of Psidium leaves. J Pharmacogn Phytochem 1:1–5

    Google Scholar 

  10. Rathi BS, Bodhankar SL et al (2006) Evaluation of aqueous leaves extract of Moringa oleifera Linn for wound healing in albino rats. Indian J Exp Biol 44:898–901

    CAS  PubMed  Google Scholar 

  11. Handa SS, Khanuja SPS et al (2008) Extraction technologies for medicinal and aromatic plants, 1st edn, no. 66. United Nations Industrial Development Organization and the International Centre for Science and High Technology, Italy

    Google Scholar 

  12. Mohameda RS, Mansoor GA (2002) The use of supercritical fluid extraction technology in food processing. Food Technol Magazine. The World Markets Research Centre, London, UK

    Google Scholar 

  13. Reverchon E, Marco I (2006) Supercritical fluid extraction and fractionation of natural matter. J Supercrit Fluids 38:146–166

    Article  CAS  Google Scholar 

  14. Sticher O (2008) Natural product isolation. Nat Prod Rep 2008(25):517–554

    Article  CAS  Google Scholar 

  15. Hemwimon S, Pavasant P et al (2007) Microwave assisted extraction of antioxidative anthraquinone from roots of Morindacitrifolia. Sep Purif Technol 54:44–50

    Article  CAS  Google Scholar 

  16. Tonthubthimthong P, Chuaprasert S et al (2001) Supercritical CO2 extraction of Nimbin from neem seeds an experimental study. J Food Eng 47:289–293

    Article  Google Scholar 

  17. Pereira CG, Meireles MAA (2010) Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic perspectives. Food Bioprocess Tech 3:340–372

    Article  CAS  Google Scholar 

  18. Liza MS, Rahman RA et al (2010) Supercritical carbon dioxide extraction of bioactive flavonoid from Strobilanthescrispus(PecahKaca). Food Bioprod Process 88:319–326

    Article  CAS  Google Scholar 

  19. Ganan N, Brignole EA (2011) Fractionation of essential oils with biocidal activity using supercritical CO2-experiments and modeling. J Supercrit Fluids 55:58–67

    Article  CAS  Google Scholar 

  20. Vidovic S, Mujic I et al (2011) Extraction of fatty acids from boletus edulis by subcritical and supercritical carbon dioxide. J Am Oil Chem Soc 88:1189–1196

    Article  CAS  Google Scholar 

  21. Aleksovski S, Sovova H et al (1998) Supercritical CO2 extraction and Soxhlet extraction of grape seeds oil. Bull Chem Technol Maced 17:129–134

    CAS  Google Scholar 

  22. Huie CW (2002) A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Anal Bioanal Chem 373:23–30

    Article  CAS  PubMed  Google Scholar 

  23. Serra AT, Seabra IJ et al (2010) Processing cherries (Prunus avium) using supercritical fluid technology. Part 1: recovery of extract fractions rich in bioactive compounds. J Supercrit Fluids 55:184–191

    Article  CAS  Google Scholar 

  24. Kehili M, Kammlott M et al (2017) Supercritical CO2 extraction and antioxidant activity of lycopene and β-carotene-enriched oleoresin from tomato (Lycopersicum esculentum L.) peels by-product of a Tunisian industry. Food Bioprod Process 102:340–349

    Article  CAS  Google Scholar 

  25. Kehili M, Schmidt LM et al (2016) Biorefinery cascade processing for creating added value on tomato industrial by-products from Tunisia. Biotechnol Biofuels 261:1–12

    Google Scholar 

  26. Jadhav D, Rekha BN et al (2009) Extraction of vanillin from vanilla pods: a comparison study of conventional Soxhlet and ultrasound assisted extraction. J Food Eng 93:421–426

    Article  Google Scholar 

  27. Cares MG, Vargas Y et al (2009) Ultrasonically assisted extraction of bioactive principles from Quillaja Saponaria Molina. Phys Procedia 3:169–178

    Article  CAS  Google Scholar 

  28. Huaneng X, Yingxin Z et al (2007) Ultrasonically assisted extraction of isoflavones from stem of Pueraria Lobata (Willd.) Ohwi and its mathematical model. Chin J Chem Eng 15:861–867

    Article  Google Scholar 

  29. Trusheva B, Trunkova D et al (2007) Different extraction methods of biologically active components from propolis: a preliminary study. Chem Cent J 1:1–4

    Article  CAS  Google Scholar 

  30. Ebrahim N, Kershi M et al (2014) antioxidant activity and anthocyanin content in flower of Mirabilis jalab L. collected from Yemen. World Appl Sci J 29:247–251

    CAS  Google Scholar 

  31. Yingngam B, Monschein M et al (2014) Ultrasound-assisted extraction of phenolic compounds from Cratoxylumformosum ssp. Formosum leaves using central composite design and evaluation of its protective ability against H2O2-induced cell death. Asian Pac J Trop Med 7:497–505

    Article  Google Scholar 

  32. Cho YJ, Hong JY et al (2006) Ultrasonication assisted extraction of resveratrol from grapes. J Food Eng 77:725–730

    Article  CAS  Google Scholar 

  33. Jain T, Jain V et al (2009) Microwave assisted extraction for phytoconstituents—An overview. Asian J Res Chem 2:19–25

    Google Scholar 

  34. Kaufmann B, Christen P (2002) Recent extraction techniques for natural products: microwave-assisted extraction and pressurized solvent extraction. Phytochem Anal 13:105–113

    Article  CAS  PubMed  Google Scholar 

  35. Ahuja S, Diehl D (2006) Sampling and Sample preparation. In: Ahuja S, Jespersen N (eds) Comprehensive analytical chemistry, vol. 47. Elsevier (Wilson & Wilson), Oxford, UK pp 15–40

    Google Scholar 

  36. Kothari V, Gupta A et al (2012) Comparative study of various methods for extraction of antioxidant and antibacterial compounds from plant seeds. J Nat Remedies 12:162–173

    CAS  Google Scholar 

  37. Sasaki K, Honda W et al (1998) A study of microwave sterilizer for injection ampoules (no. 4): application to sterilization of thermally labile drug solutions. J Pharm Sci Technol 58:125–135

    Google Scholar 

  38. Letellier M, Budzinski H (1999) Microwave assisted extraction of organic compounds. Analusis 27:259–270

    Article  CAS  Google Scholar 

  39. Mandal V, Mohan Y et al (2007) Microwave assisted extraction: an innovative and promising extraction tool for medicinal plant research. Pharmacog Rev 1:7–18

    Google Scholar 

  40. Li H, Deng Z et al (2012) Microwave-assisted extraction of phenolics with maximal antioxidant activities in tomatoes. J Food Chem 130:928–936

    Article  CAS  Google Scholar 

  41. Thomas R, Tripathi R et al (2012) Comparative study of phenolics and antioxidant activity of phytochemicals of T. chebula extracted using microwave and ultrasonication. Int J Pharm Sci Res 3(1):194–197

    Google Scholar 

  42. Ben-Youssef S, Fakhfakh J et al (2017) Green extraction procedures of lipids from Tunisian date palm seeds. Ind Crops Prod 108:520–525

    Article  CAS  Google Scholar 

  43. Upadhyay R, Ramalakshmi K et al (2012) Microwave-assisted extraction of chlorogenic acids from green coffee beans. Food Chem 130:184–188

    Article  CAS  Google Scholar 

  44. Orio L, Alexanderu L et al (2012) UAE, MAE, SFE-CO2 and classical methods for the extraction of Mitragynaspeciosa leaves. Ultrason Sono chem 19:591–595

    Article  CAS  PubMed  Google Scholar 

  45. Hahn-Deinstrop E (2000) Applied thin layer chromatography: best practice and avoidance of mistakes. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  46. Sasidharan S, Chen Y et al (2011) Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med 8:1–10

    Google Scholar 

  47. Altemimi A, Lakhssassi N et al (2017) Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 6:42

    Article  PubMed Central  CAS  Google Scholar 

  48. Harborne JB (1998) Phytochemical methods: a guide to modern techniques of plant analysis. 2nd edn. Chapman and Hall publishers, Springer, Germany

    Google Scholar 

  49. Krishnananda PI, Amit GD et al (2017) Phytochemicals: extraction methods, identification and detection of bioactive compounds from plant extracts. J Pharmacogn Phytochem 6:32–36

    Google Scholar 

  50. Salah HB, Jarraya R et al (2002) Flavonoltriglycosides from the leaves of Hammada scoparia (POMEL) ILJIN. Chem Pharm Bull 50:1268–1270

    Article  PubMed  Google Scholar 

  51. Zhang Z, Pang X et al (2005) Role of peroxidase in anthocyanin degradation in litchi fruit pericarp. Food Chem 90:47–52

    Article  CAS  Google Scholar 

  52. Hostettmann K, Wolfender JL et al (1997) Rapid detection and subsequent isolation of bioactive constituents of crude plant extracts. Planta Med 63:2–10

    Article  CAS  PubMed  Google Scholar 

  53. Guiochon G (2001) Basic principles of chromatography. In: Günzler H, Williams A (eds) Handbook of analytical techniques. Wiley-VCH Verlag GmbH, Weinheim, Germany, pp 189–194

    Google Scholar 

  54. Yang F-Q, Zuo H-L et al (2013) Preparative gas chromatography and its applications. J Chromatogr Sci 51:704–715

    Article  PubMed  CAS  Google Scholar 

  55. Hancock WS (1990) High performance liquid chromatography in biotechnology. Wiley-Interscience, New Jersey, USA

    Google Scholar 

  56. Babaee S, Beiraghi A (2010) Micellar extraction and high performance liquid chromatography-ultra violet determination of some explosives in water samples. Anal Chim Acta 662:9–13

    Article  CAS  PubMed  Google Scholar 

  57. Michel T, Khlif I et al (2015) UHPLC-DAD-FLD and UHPLC-HRMS/MS based metabolic profiling and characterization of different Olea Europaea organs of Koroneiki and Chetoui varieties. Phytochem Lett 11:424–439

    Article  CAS  Google Scholar 

  58. Nyiredy S (2001) Planar chromatography: a retrospective view for the third millennium. Springer Scientific Publisher, Debrecen

    Google Scholar 

  59. Rajopadhye AA, Namjoshi TP et al (2012) Rapid validated HPTLC method for estimation of piperine and piperlongumine in root of piper longum extract and its commercial formulation. Rev Bras de Farmacogn 22:1355–1361

    Article  CAS  Google Scholar 

  60. Chaitanya D (2014) Phani.r.s.ch. flash chromatography and preparative HPLC. Res Desk 3:434–439

    Google Scholar 

  61. Rouessac F, Rouessac A et al (2004) Analyse Chimique, Méthodes et techniques instrumentales modernes, 6ème édn. Dunod, Paris

    Google Scholar 

  62. Silverstein RM, Webster FX et al (2007) Identification spectrométrique de composés organiques, 2ème édn. De Boeck

    Google Scholar 

  63. Bernard AS, Clède S et al (2014) Techniques expérimentales en chimie, 2ème édn. Dunod, Paris

    Google Scholar 

  64. Richard BVB, LeRoy BM et al (1988) Comparison of electron impact, desorption chemical ionization, field desorption, and fast atom bombardment mass spectra of nine monosubstituted Group VI metal carbonyls. Anal Chem 60:1314–1318

    Article  Google Scholar 

  65. Huang EC, Wachs H, Conboy JJ et al (1990) Atmospheric Pressure Ionization Mass Spectrometry. Anal Chem 62:713–725

    Google Scholar 

  66. Cech NB, Enke CG (2001) Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom Rev 20:362–387

    Article  CAS  PubMed  Google Scholar 

  67. Ching J, Soh WL et al (2012) Identification of active compounds from medicinal plant extracts using gas chromatography-mass spectrometry and multivariate data analysis. J Sep Sci 35:53–59

    Article  PubMed  CAS  Google Scholar 

  68. Bouchonnet S, Libong D (2004) Le couplage chromatographie en phase gazeuse-spectrométrie de masse. Actual Chim 7–14

    Google Scholar 

  69. Kolsi RBA, Salah HB et al (2017) Sulphated polysaccharide isolated from Sargassumvulgare: characterization and hypolipidemic effects. Carbohydr Polym 170:148–159

    Article  PubMed  CAS  Google Scholar 

  70. De Hoffman E, Stroobant V (2001) Mass spectrometry: principles and applications, 2ème edn. Wiley

    Google Scholar 

  71. Mroczek T, Ndjoko K et al (2004) On-line structure characterization of pyrrolizidine alkaloids in Onosmastellulatum and Emilia coccinea by liquid chromatography–ion-trap mass spectrometry. J Chromatogr A 1056:91–97

    Article  CAS  PubMed  Google Scholar 

  72. Bouaziz-Ketata H, Zouari N et al (2015) Flavonoid profile and antioxidant activities of methanolic extract of Hyparrheniahirta (L.) Stapf. Indian J Exp Biol 53:208–215

    PubMed  Google Scholar 

  73. Dugo P, Mondello L et al (2000) LC-MS for the identification of oxygen heterocyclic compounds in citrus essential oils. J Pharm Biomed Anal 24:147–154

    Article  CAS  PubMed  Google Scholar 

  74. La Torre GL, Saitta M, Vilasi F, Pellicanò T, Dugo G (2006) Direct determination of phenolic compounds in Sicilian wines by liquid chromatography with PDA and MS detection. Food Chem 94:640–650

    Article  CAS  Google Scholar 

  75. Andries PB, Thomas RC et al (1987) Ion spray interface for combined liquid chromatography/atmospheric pressure ionization mass spectrometry. Anal Chem 59:2642–2646

    Article  Google Scholar 

  76. Kolsi RBA, Salah HB et al (2017) Effects of Cymodocea nodosa extract on metabolic disorders and oxidative stress in alloxan-diabetic rats. Biomed Pharmacother 89:257–267

    Article  CAS  Google Scholar 

  77. Gunther H (1996) La Spectroscopie de RMN: principes de base, concepts et applications de la Spectroscopie de Resonance Magnétique Nucléaire du Proton et du Carbone 13 en Chimie. Elsevier Masson, Paris

    Google Scholar 

  78. Bross-Walch N, Kühn T et al (2005) Strategies and tools for structure determination of natural products using modern methods of NMR spectroscopy. Chem Biodivers 2:147–177

    Article  Google Scholar 

  79. Giraudeau P, Tea I et al (2014) Reference and normalization methods: essential tools for the intercomparison of NMR spectra. J Pharm Biomed Anal 93:3–16

    Article  CAS  PubMed  Google Scholar 

  80. Abraham RJ, Fisher J et al (1988) Introduction to NMR spectroscopy. Wiley, Chichester

    Google Scholar 

  81. Derome AE (1987) Modern NMR techniques for chemistry research. Pergamon Press, Oxford

    Google Scholar 

  82. Sanders JKM, HunterBK (1993) Modern NMR spectroscopy, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  83. Mahrous EA, Farag MA (2015) Two-dimensional NMR spectroscopic approaches for exploring plant metabolome: a review. J Adv Res 6:3–15

    Article  CAS  PubMed  Google Scholar 

  84. Friebolin H (2010) Basic one- and -two-dimensional NMR spectroscopy. 5th edn. Wiley VCH

    Google Scholar 

  85. Breton RC, Reynolds WF (2013) Using NMR to identify and characterize natural products. Nat Prod Rep 30:501–524

    Article  CAS  PubMed  Google Scholar 

  86. Fuloria NK, Fuloria S (2013) Structural elucidation of small organic molecules by 1D, 2D and multi-dimensional-solution NMR spectroscopy. Anal Bioanal Tech 11:1–8

    Google Scholar 

  87. Ben Youssef S, Fakhfakh J et al (2016) Efficient purification and complete NMR characterization of galactinol, sucrose, raffinose, and stachyose isolated from Pinus halepensis (Aleppo pine) seeds using acetylation procedure. J Carbohydr Chem 35:224–237

    Article  CAS  Google Scholar 

  88. Aganova O, Galiullina L et al (2014) The study of the conformation and dynamics of the new quaternary phosphonium salts by NMR spectroscopy. Appl Magn Reson 45:653–665

    Article  CAS  Google Scholar 

  89. Khodov I, Efimov S et al (2014) Determination of preferred conformations of ibuprofen in chloroform by 2D NOE spectroscopy. Eur J Pharm Sci 65:65–73

    Article  CAS  PubMed  Google Scholar 

  90. Canet D, Boubel J-C et al (2002) La RMN: concepts, méthodes et applications, 2ème édn. Dunod

    Google Scholar 

  91. Keskes H, Litaudon M et al(2014)Antioxidant and α-amylase inhibitory activities of extract and isolates from Zygogynumpancheri subsp. Arrhantum. J Asian Nat Prod Res 16:1132–1138

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noureddine Allouche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ben Salah, H., Allouche, N. (2019). Plant-Based Chemicals Extraction and Isolation. In: Li, Y., Chemat, F. (eds) Plant Based “Green Chemistry 2.0”. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3810-6_4

Download citation

Publish with us

Policies and ethics