Skip to main content

From Petroleum to Bio-Based Solvents: From Academia to Industry

  • Chapter
  • First Online:
Plant Based “Green Chemistry 2.0”

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

The property and applications of bio-based solvents in place of petroleum-based ones for natural product extractions are discussed in this chapter including vegetable oils, terpenes, 2-methyltetrahydrofuran, bio-ethanol and natural deep eutectic solvents (NADES). Several commonly used prediction techniques such as Hansen solubility parameters (HSP), COnductor-like Screening MOdel for Real Solvents (COSMO-RS) and life-cycle assessment (LCA) are introduced to evaluate theoretical solubility and environmental impacts during all stages of a solvent’s life. Besides, the revisit of polar paradox theory helps us to better understand the solubilization mechanism underpinning the extraction. This chapter is intended to describe not only past and current achievements and challenges, but also to give visions for more sustainable applications in this increasingly important field of chemistry. Finally, it is also intended to draw the way to more rigorous research going beyond empiricism, which is still the usual approach in plant extractions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Erythropel HC, Zimmerman JB, de Winter TM et al (2018) The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chem 20:1929–1961

    Article  CAS  Google Scholar 

  2. Anastas PT, Zimmerman JB (2003) Design through the 12 principles of green engineering. Environ Sci Technol 37:94A–101A

    Article  PubMed  Google Scholar 

  3. Chemat F, Abert-Vian M, Cravotto G (2012) Green extraction of natural products: concept and principles. Int J Mol Sci 13:8615–8627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Capello C, Fischer U, Hungerbühler K (2007) What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem 9:927–934

    Article  CAS  Google Scholar 

  5. Kerton FM (2009) Renewable solvents. In: Kerton FM (ed) Alternative solvents for green chemistry. Royal Society of Chemistry, Cambridge, pp 97–116

    Google Scholar 

  6. Srinivas K, King JW, Monrad JK, Howard LR, Hansen CM (2009) Optimization of subcritical fluid extraction of bioactive compounds using Hansen solubility parameters. J Food Sci 74:E342–E354

    Article  CAS  PubMed  Google Scholar 

  7. Barbero GF, Palma M, Barroso CG (2006) Pressurized liquid extraction of capsaicinoids from peppers. J Agric Food Chem 54:3231–3236

    Article  CAS  PubMed  Google Scholar 

  8. Benito-Román Ó, Alonso E, Cocero MJ (2013) Pressurized hot water extraction of β-glucans from waxy barley. J Supercrit Fluid 73:120–125

    Article  CAS  Google Scholar 

  9. Cacace JE, Mazza GJ (2006) Pressurized low polarity water extraction of lignans from whole flaxseed. J Food Eng 77:1087–1095

    Article  CAS  Google Scholar 

  10. Gil-Ramírez A, Mendiola JA, Arranz E et al (2012) Highly isoxanthohumol enriched hop extract obtained by pressurized hot water extraction (PHWE). Chemical and functional characterization. Innovat Food Sci Emerg Tech 16:54–60

    Article  CAS  Google Scholar 

  11. Deng C, Yao N, Wang A, Zhang X (2005) Determination of essential oil in a traditional Chinese medicine, Fructus amomi by pressurized hot water extraction followed by liquid-phase microextraction and gas chromatography–mass spectrometry. Anal Chim Acta 536:237–244

    Article  CAS  Google Scholar 

  12. Rapinel V, Santerre C, Hanaei F et al (2018) Potentialities of using liquefied gases as alternative solvents to substitute hexane for the extraction of aromas from fresh and dry natural products. C R Chim 21:590–605

    Article  CAS  Google Scholar 

  13. McClements DJ (2004) Food emulsions: Principles, practice and techniques, 2nd edn. CRC Press, Florida, USA

    Book  Google Scholar 

  14. Gan HL, Che Man YB, Tan CP, Noraini I, Nazimah SAH (2005) Characterisation of vegetable oils by surface acoustic wave sensing electronic nose. Food Chem 89:507–518

    Article  CAS  Google Scholar 

  15. Tan CP, Che Man YB, Selamat J, Yusoff MSA (2002) Comparative studies of oxidative stability of edible oils by differential scanning calorimetry and oxidative stability index methods. Food Chem 76:385–389

    Article  CAS  Google Scholar 

  16. Hendriks HFJ, Weststrate JA, van Vliet T, Meijer GW (1999) Spreads enriched with three different levels of vegetable oil sterols and the degree of cholesterol lowering in normocholesterolaemic and mildly hypercholesterolaemic subjects. Eur J Clin Nutr 53:319–327

    Article  CAS  PubMed  Google Scholar 

  17. Reische DW, Lillard DA, Eitenmiller RR (2002) Antioxidants. In: Akoh CC, Min DB (eds) Food lipids: chemistry, nutrition, and biotechnology, 2nd edn. CRC Press, New York, USA, pp 488–511

    Google Scholar 

  18. Chaiyasit W, Elias RJ, McClements DJ, Decker EA (2007) Role of physical structures in bulk oils on lipid oxidation. Crit Rev Food Sci Nutr 47:299–317

    Article  CAS  PubMed  Google Scholar 

  19. Kamal-Eldin A (2005) Minor components of fats and oils. In: Shahidi F (eds) Bailey’s industrial oil and fat products. Wiley, Canada, pp 319–347

    Google Scholar 

  20. Burton GW, Traber MG (1990) Vitamin E: antioxidant activity, biokinetics and bioavailability. Ann Rev Nutr 10:357–380

    Article  CAS  Google Scholar 

  21. Van Acker SABE, Koymans LMH, Bast A (1993) Molecular pharmacology of vitamin E: structural aspects of antioxidant activity. Free Rad Biol Med 15:311–328

    Article  PubMed  Google Scholar 

  22. Combs, GF (2007) The vitamins. Fundamental aspects in nutrition and health, 3rd edn. Academic Press, USA

    Google Scholar 

  23. Johnson LA (2002) Recovery, refining, converting, and satbilizing edible fats and oils. In: Akoh CC, Min DB (eds) Food lipids: chemistry, nutrition, and biotechnology, 2nd edn. CRC Press, New York, pp 222–270

    Google Scholar 

  24. Xenakis A, Papadimitriou V, Sotiroudis TG (2010) Colloidal structures in natural oils. Curr Opin Colloid Int Sci 15:55–60

    Article  CAS  Google Scholar 

  25. Galli C, Petroni A, Visioli F (1994) Nautral antioxidants, with special reference to those in olive oil, and cell protection. Eur J Pharm Sci 2:67–68

    Article  CAS  Google Scholar 

  26. Cert A, Moreda W, Pérez-Camino MC (2000) Chromatographic analysis of minor constituents in vegetable oils. J Chromatogr A 881:131–148

    Article  CAS  PubMed  Google Scholar 

  27. Hidalgo FJ, Zamora R (2006) Peptides and proteins in edible oils: stability, allergenicity, and new processing trends. Trends Food Sci Technol 17:56–63

    Article  CAS  Google Scholar 

  28. Tannahill R (1989) Food in history. Three Rivers Press, USA

    Google Scholar 

  29. Baiano A, Gambacorta G, La Notte E (2010) Aromatization of olive oil. Transworld Research Network

    Google Scholar 

  30. Li Y, Fabiano-Tixier AS, Chemat F (2017) Vegetable oils as alternative solvents for green extraction of natural products. In: Chemat S (ed) Edible oils: extraction, processing and applications. Taylor & Francis, pp 205–222

    Google Scholar 

  31. Li Y, Fabiano-Tixier AS, Tomao V, Cravotto G, Chemat F (2013) Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent. Ultrason Sonochem 20:12–18

    Article  PubMed  CAS  Google Scholar 

  32. Li Y, Fabiano-Tixier AS, Ginies C, Chemat F (2014) Direct green extraction of volatile aroma compounds using vegetable oils as solvents: theoretical and experimental solubility study. LWT-Food Sci Technol 59:724–731

    Article  CAS  Google Scholar 

  33. Li Y, Fabiano-Tixier AS, Ruiz K et al (2015) Comprehension of direct extraction of hydrophilic antioxidants using vegetable oils by polar paradox theory and small angle X-ray scattering analysis. Food Chem 173:873–880

    Article  CAS  PubMed  Google Scholar 

  34. Krichnavaruk S, Shotipruk A, Goto M, Pavasant P (2008) Supercritical carbon dioxide extraction of astaxanthin from Haematococcus pluvialis with vegetable oils as co-solvent. Bioresour Technol 99:5556–5560

    Article  CAS  PubMed  Google Scholar 

  35. Ma Q, Xu X, Gao Y, Wang Q, Zhao J (2008) Optimisation of supercritical carbon dioxide extraction of lutein esters from marigold (Tagetes erect L.) with soybean oil as a co-solvent. Int J Food Sci Tech 43:1763–1769

    Article  CAS  Google Scholar 

  36. Gao Y, Liu X, Xu H et al (2010) Optimization of supercritical carbon dioxide extraction of lutein esters from marigold (Tagetes erecta L.) with vegetable oils as continuous co-solvents. Sep Purif Technol 71:214–219

    Article  CAS  Google Scholar 

  37. Rossignol-Castera A (2010) Methods for extracting non-volatile compounds. International patent WO 2010112760 A1, 2010

    Google Scholar 

  38. Chevereau P (1998) Method for extracting and fixing aromas on non-aqueous substrate, machine for implementing the method, and product thereby. U.S. patent 5853726, 1998

    Google Scholar 

  39. Gu Y, Jérôme F (2013) Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chem Soc Rev 42:9550–9570

    Article  CAS  PubMed  Google Scholar 

  40. Mamidipally PK, Liu SX (2004) First approach on rice bran oil extraction using limonene. Eur J Lipid Sci Technol 106:122–125

    Article  CAS  Google Scholar 

  41. Liu SX, Mamidipally PK (2005) Quality comparison of rice bran oil extracted with d-limonene and hexane. Cereal Chem 82:209–215

    Article  CAS  Google Scholar 

  42. Bertouche S, Tomao V, Hellal A, Boutekedjiret C, Chemat F (2013) First approach on edible oil determination in oilseeds products using alpha-pinene. J Essent Oil Res 25:439–443

    Article  CAS  Google Scholar 

  43. Virot M, Tomao V, Ginies C, Chemat F (2008) Total lipid extraction of food using d-limonene as an alternative to n-hexane. Chromatographia 68:311–313

    Article  CAS  Google Scholar 

  44. Virot M, Tomao V, Ginies C, Visinoni F, Chemat F (2008) Green procedure with a green solvent for fats and oils’ determination: microwave-integrated Soxhlet using limonene followed by microwave Clevenger distillation. J Chromatogr A 1196–1197:147–152

    Article  PubMed  CAS  Google Scholar 

  45. Li Y, Fine F, Fabiano-Tixier AS et al (2014) Evaluation of alternative solvents for improvement of oil extraction from rapeseeds. C R Chim 17:242–251

    Article  CAS  Google Scholar 

  46. Tanzi CD, Abert-Vian M, Ginies C, Elmaataoui M, Chemat F (2012) Terpenes as green solvents for extraction of oil from microalgae. Molecules 17:8196–8205

    Article  CAS  PubMed Central  Google Scholar 

  47. Tanzi CD, Abert-Vian M, Chemat F (2013) New procedure for extraction of algal lipids from wet biomass: a green clean and scalable process. Bioresour Technol 134:271–275

    Article  CAS  Google Scholar 

  48. Golmakani MT, Mendiola JA, Rezaei K, Ibáñez E (2014) Pressurized limonene as an alternative bio-solvent for the extraction of lipids from marine microorganisms. J Supercrit Fluid 92:1–7

    Article  CAS  Google Scholar 

  49. Sicaire AG, Abert Vian M, Fine F et al (2015) Experimental approach versus COSMO-RS assisted solvent screening for predicting the solubility of rapeseed oil. OCL 22:D404

    Article  Google Scholar 

  50. Chemat-Djenni Z, Ferhat MA, Tomao V, Chemat F (2010) Carotenoid extraction from tomato using green solvent resulting from orange processing waste. J Essent Oil Bear Plant 13:139–147

    Article  CAS  Google Scholar 

  51. Castro-Puyana M, Herrero M, Iratxe U et al (2013) Optimization of clean extraction methods to isolate carotenoids from the microalga Neochloris oleoabundans and subsequent chemical characterization using liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 405:4607–4616

    Article  CAS  PubMed  Google Scholar 

  52. Filly A, Fabiano-Tixier AS, Lemasson Y, Roy C, Fernandez X, Chemat F (2014) Extraction of aroma compounds in blackcurrant buds by alternative solvents: theoretical and experimental solubility study. C R Chimie 17:1268–1275

    Article  CAS  Google Scholar 

  53. Filly A, Fabiano-Tixier AS, Fernandez X, Chemat F (2015) Alternative solvents for extraction of food aromas. Experimental and COSMO-RS study. LWT-Food Sci Technol 61:33–40

    Article  CAS  Google Scholar 

  54. Veillet S, Tomao V, Ruiz K, Chemat F (2010) Green procedure using limonene in the Dean-Stark apparatus for moisture determination in food products. Anal Chim Acta 674:49–52

    Article  CAS  PubMed  Google Scholar 

  55. Bertouche S, Tomao V, Ruiz K, Hellal A, Boutekedjiret C, Chemat F (2012) First approach on moisture determination in food products using alpha-pinene as an alternative solvent for Dean-Stark distillation. Food Chem 134:602–605

    Article  CAS  Google Scholar 

  56. Aissou M, Chemat-Djenni Z, Yara-Varón E, Fabiano-Tixier AS, Chemat F (2017) Limonene as an agro-chemical building block for the synthesis and extraction of bioactive compounds. C R Chim 20:346–358

    Article  CAS  Google Scholar 

  57. Yara-Varón E, Selka A, Fabiano-Tixier AS et al (2016) Solvent from forestry biomass. Pinane a stable terpene derived from pine tree byproducts to substitute n-hexane for the extraction of bioactive compounds. Green Chem. 18:6596–6608

    Article  CAS  Google Scholar 

  58. vom Stein T, Grande PM, Kayser H, Sibilla F, Leitner W, Domínguez de María P (2011) From biomass to feedstock: one-step fractionation of lignocellulose components by the selective organic acid-catalyzed depolymerization of hemicellulose in a biphasic system. Green Chem 13:1772–1777

    Article  CAS  Google Scholar 

  59. Tenne SJ, Kinzel J, Arlt M et al (2013) 2-Methyltetrahydrofuran and cyclopentylmethylether: two green solvents for efficient purification of membrane proteins like FhuA. J Chromatogr B 937:13–17

    Article  CAS  Google Scholar 

  60. Sicaire AG, Abert-Vian M, Filly A, Li Y, Bily A, Chemat F (2014) 2-Methyl-tetrahydrofuran: main properties, production processes, and application in extraction of natural products. In: Abert-Vian M, Chemat F (eds) Alternative solvents for natural products extraction. Springer, Berlin, pp 253–268

    Chapter  Google Scholar 

  61. Yara-Varón E, Fabiano-Tixier AS, Balcells M et al (2016) Is it possible to substitute hexane with green solvents for extraction of carotenoids? A theoretical versus experimental solubility study. RSC Adv 6:27750–27759

    Article  CAS  Google Scholar 

  62. Sicaire AG, Vian M, Fine F et al (2015) Alternative bio-based solvents for extraction of fat and oils: solubility prediction, global yield, extraction kinetics, chemical composition and cost of manufacturing. Int J Mol Sci 16:8430–8453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dai Y, van Spronsen J, Witkamp GJ, Verpoorte R, Choi YH (2013) Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta 766:61–68

    Article  CAS  PubMed  Google Scholar 

  64. Vanda H, Dai Y, Wilson EG, Verpoorte R, Choi YH (2018) Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents. C R Chim 21:628–638

    Article  CAS  Google Scholar 

  65. Dai Y, Rozema E, Verpoorte R, Choi YH (2016) Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents. J Chromatogr A 1434:50–56

    Article  CAS  PubMed  Google Scholar 

  66. Wei Z, Qi X, Li T et al (2015) Application of natural deep eutectic solvents for extraction and determination of pehnolics in Cajanus cajan leaves by ultra performance liquid chromatography. Sep Purif Technol 149:237–244

    Article  CAS  Google Scholar 

  67. Dai Y, Verpoorte R, Choi YH (2014) Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius). Food Chem 159:116–121

    Article  CAS  PubMed  Google Scholar 

  68. Dai Y, Witkamp GJ, Verpoorte R, Choi YH (2013) Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L. Anal Chem 85:6272–6278

    Article  CAS  PubMed  Google Scholar 

  69. Dai Y, Witkamp GJ, Verpoorte R, Choi YH (2015) Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem 187:14–19

    Article  CAS  PubMed  Google Scholar 

  70. Radošević K, Ćurko N, Srček G et al (2016) Natural deep eutectic solvents as beneficial extractants for enhancement of plant extracts bioactivity. LWT-Food Sci Technol 73:45–51

    Article  CAS  Google Scholar 

  71. Espino M, Fernández MA, Gomez FJV, Silva MF (2016) Natural designer solvents for greening analytical chemistry. TrAC-Trends Anal Chem 76:126–136

    Article  CAS  Google Scholar 

  72. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  CAS  PubMed  Google Scholar 

  73. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energ. Convers. Manage. 52:858–875

    Article  CAS  Google Scholar 

  74. Xia S, Yuan Z, Wang L, Chen P, Hou Z (2012) Catalytic production of 1,2-propanediol from glycerol in bio-ethanol solvent. Bioresour Technol 104:814–817

    Article  CAS  PubMed  Google Scholar 

  75. Hu J, Guo Z, Glasius M et al (2011) Pressurized liquid extraction of ginger (Zingiber officinale Roscoe) with bioethanol: an efficient and sustainable approach. J Chromatogr A 1218:5765–5773

    Article  CAS  PubMed  Google Scholar 

  76. Moity L, Durand M, Benazzouz A et al (2012) Panorama of sustainable solvents using the COSMO-RS approach. Green Chem 14:1132–1145

    Article  CAS  Google Scholar 

  77. Moity L, Benazzouz A, Molinier V et al (2015) Glycerol acetals and ketals as bio-based solvents: positioning in Hansen and COSMO-RS spaces, volatility and stability towards hydrolysis and autoxidation. Green Chem 17:1779–1792

    Article  CAS  Google Scholar 

  78. Moity L, Molinier V, Benazzouz A et al (2014) In silico design of bio-based commodity chemicals: application to itaconic acid based solvents. Green Chem 16:146–160

    Article  CAS  Google Scholar 

  79. Moity L, Molinier V, Benazzouz A et al (2016) A “top-down” in silico approach for designing ad hoc bio-based solvents: application to glycerol-derived solvents of nitrocellulose. Green Chem 18:3239–3249

    Article  CAS  Google Scholar 

  80. Hansen CM (1999) Hansen solubility parameters—a user’s handbook. CRC Press, Florida, USA

    Google Scholar 

  81. Stefanis E, Panayiotou C (2008) Prediction of Hansen solubility parameters with a new group-contribution method. Int J Thermophys 29:568–585

    Article  CAS  Google Scholar 

  82. Benazzouz A, Moity L, Pierlot C et al (2013) Selection of a greener set of solvents evenly spread in the Hansen space by space-filling design. Ind Eng Chem Res 52:16585–16597

    Article  CAS  Google Scholar 

  83. Laboukhi-Khorsi S, Daoud K, Chemat S (2017) Efficient solvent selection approach for high solubility of active phytochemicals: application for the extraction of an antimalarial compound from medicinal plants. ACS Sustain Chem Eng 5:4332–4339

    Article  CAS  Google Scholar 

  84. Petchey THM, Comerford JW, Farmer TJ et al (2018) Optimization of amidation reactions using predictive tools for the replacement of regulated solvents with safer biobased alternatives. ACS Sustain Chem Eng 6:1550–1554

    Article  CAS  Google Scholar 

  85. Benazzouz A, Moity L, Pierlot C, Molinier V, Aubry JM (2014) Hansen approach versus COSMO-RS for predicting the solubility of an organic UV filter in cosmetic solvents. Colloids Surf A Physiochem Eng Aspects 458:101–109

    Article  CAS  Google Scholar 

  86. Koudous I, Kunz W, Strube J (2015) Panorama of sustainable solvents for green extraction processes. In: Chemat F, Strube J (eds) Green extraction of natural products: theory and practice. Wiley-VCH, Germany, pp 180–187

    Google Scholar 

  87. Klamt A, Eckert F, Arlt W (2010) COSMO-RS: an alternative to simulation for calculating thermodynamic properties of liquid mixtures. Annu Rev Chem Biomol Eng 1:101–122

    Article  CAS  PubMed  Google Scholar 

  88. Moity L, Durand M, Benazzouz A, Molinier V, Aubery JM (2014) In silico search for alternative green solvents. In: Chemat F, Abert-Vian M (eds) Alternative solvents for natural products extraction. Springer, New York, pp 1–23

    Google Scholar 

  89. Cascant MM, Breil C, Garrigues S et al (2017) A green analytical chemistry approach for lipid extraction: computation methods in the selection of green solvents as alternative to hexane. Anal Bioanal Chem 409:3527–3539

    Article  CAS  PubMed  Google Scholar 

  90. Breil C, Abert Vian M, Zemb T, Kunz W, Chemat F (2017) “Bligh and Dyer” and Folch methods for solid-liquid-liquid extraction of lipids from microorganisms. Comprehension of solvatation mechanisms and towards substitution with alternative solvents. Int J Mol Sci 18:708–729

    Article  PubMed Central  CAS  Google Scholar 

  91. Rapinel V, Breil C, Makerri C et al (2017) Feasibility of using liquefied gas HFO-1234ze (trans-1,3,3,3-tetrafluoroprop-1-ene) as an alternative to conventional solvents for solid-liquid extraction of food ingredients and natural products. LWT-Food Sci Technol 83:225–234

    Article  CAS  Google Scholar 

  92. Rapinel V, Rombaut N, Rakotomanomana N et al (2017) An original approach for lipophilic natural products extraction: Use of liquefied n-butane as alternative solvent to n-hexane. LWT-Food Sci Technol 85:524–533

    Article  CAS  Google Scholar 

  93. Bundeesomchok K, Filly A, Rakotomanomana N, Panichayupakaranant P, Chemat F (2016) Extraction of α-mangostin from Garcinia mangostana L. using alternative solvents: computational predictive and experimental studies. LWT-Food Sci Technol 65:297–303

    Article  CAS  Google Scholar 

  94. Grazhdannikov AE, Kornaukhova LM, Rodionov VI et al (2018) Selecting a green strategy on extraction of birch bark and isolation of pure betulin using monoterpenes. ACS Sustain Chem Eng 6:6281–6288

    Article  CAS  Google Scholar 

  95. Everitt BS (1993) Cluster analysis. Wiley, New York

    Google Scholar 

  96. Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244

    Article  Google Scholar 

  97. Fréville V, van Hecke E, Marinkovic S, Emenwein C, Pezron I (2011) Mapping and multivariate analysis for a rapid evaluation of new green solvents characteristics and efficiency. J Disper Sci Technol 32:1742–1752

    Article  CAS  Google Scholar 

  98. Clark JH, Tavener SJ (2007) Alternative solvents: shades of green. Org Process Res Dev 11:149–155

    Article  CAS  Google Scholar 

  99. Hackl K, Kunz W (2018) Some aspects of green solvents. C R Chim 21:572–580

    Article  CAS  Google Scholar 

  100. Li Y, Fabiano-Tixier AS, Abert-Vian M, Chemat F (2013) Solvent-free microwave extraction of bioactive compounds provides a tool for green analytical chemistry. TrAC-Trend Anal Chem 47:1–12

    Article  CAS  Google Scholar 

  101. Zhong Y, Shahidi F (2012) Antioxidant behavior in bulk oil: limitations of polar paradox theory. J Agric Food Chem 60:4–6

    Article  CAS  PubMed  Google Scholar 

  102. Shahidi F, Zhong Y (2011) Revisiting the polar paradox theory: a critical overview. J Agric Food Chem 59:3499–3504

    Article  CAS  PubMed  Google Scholar 

  103. Laguerreab M, Bayrasya C, Panyabd A et al (2015) What makes good antioxidants in lipid-based systems? The next theories beyond the polar paradox. Crit Rev Food Sci Nutr 55:183–201

    Article  CAS  Google Scholar 

  104. Laguerreab M, Bily A, Roller M, Bitrić S (2017) Mass transport phenomena in lipid oxidation and antioxidation. Annu Rev Food Sci Technol 8:391–411

    Article  CAS  Google Scholar 

  105. Plotka-Wasylka J, Rutkowska M, Owczarek K, Tobiszewski M, Namieśnik J (2017) Extraction with environmentally friendly solvents. TrAC-Trends Anal Chem 91:12–55

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y., Kunz, W., Chemat, F. (2019). From Petroleum to Bio-Based Solvents: From Academia to Industry. In: Li, Y., Chemat, F. (eds) Plant Based “Green Chemistry 2.0”. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3810-6_3

Download citation

Publish with us

Policies and ethics