Skip to main content

Application of Electrolyzed Water on Aquatic Product

  • Chapter
  • First Online:
Electrolyzed Water in Food: Fundamentals and Applications
  • 609 Accesses

Abstract

The aquaculture industry has witnessed a continuous rapid growth over the last two decades from a combination of increased seafood consumption and production. These aquatic products filled a niche in the modern demand for alternate sources of protein. Electrolyzed water (EW) , a novel non-thermal technique, is currently being used as an environmental-friendly sanitizer, and frozen electrolyzed water ice (EW ice) has emerged as an alternative method for improving the safety and quality of seafood. EW and EW ice whilst reducing microbial contamination also contribute to extending the shelf life of aquatic products compared to conventional sanitizers. This present chapter provides a comprehensive guide to the application of EW and EW ice on aquatic products and offers clear perspectives for a global adoption of EW in the seafood industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Holy MA, Rasco BA (2015) The bactericidal activity of acidic electrolyzed oxidizing water against Escherichia coli, O157: H7, Salmonella, Typhimurium, and Listeria monocytogenes, on raw fish, chicken and beef surfaces. Food Control 54:317–321

    Article  CAS  Google Scholar 

  • Al-Qadiri HM, Al-Holy MA, Shiroodi SG et al (2016) Effect of acidic electrolyzed water-induced bacterial inhibition and injury in live clam (venerupis philippinarum) and mussel (mytilus edulis). Int J Food Microbiol 231:48–53

    Article  CAS  PubMed  Google Scholar 

  • Athayde DR, Flores D, Da JS et al (2017) Application of electrolyzed water for improving pork meat quality. Food Res Int 100:757–763

    Article  CAS  PubMed  Google Scholar 

  • Ayebah B, Hung YC, Frank JF (2005) Enhancing the bactericidal effect of electrolyzed water on Listeria monocytogenes biofilms formed on stainless steel. J Food Prot 68:1375–1380

    Article  PubMed  Google Scholar 

  • Bassin JP, Kleerebezem R, Rosado AS et al (2012) Effect of different operational conditions on biofilm development, nitrification, and nitrifying microbial population in moving-bed biofilm reactors. Environ Sci Technol 46(3):1546–1555

    Article  CAS  PubMed  Google Scholar 

  • Bridier A, Sanchez-Vizuete P, Guilbaud M et al (2015) Biofilm-associated persistence of food-borne pathogens. Food Microbio 45:167–178

    Article  CAS  Google Scholar 

  • Carpentier B, Cerf O (1993) Biofilms and their consequences, with particular reference to hygiene in the food industry. J Appl Microbiol 75(6):499–511

    CAS  Google Scholar 

  • Chaillou S, Chaulot-Talmon A, Caekebeke H et al (2015) Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage. ISME J 9(5):1105–1118

    Article  PubMed  Google Scholar 

  • Chen J, Xu B, Deng S et al (2016) Effect of combined pretreatment with slightly acidic electrolyzed water and botanic biopreservative on quality and shelf life of Bombay duck (harpadon nehereus). J Food Qual 39(2):116–125

    Article  CAS  Google Scholar 

  • Costerton JW, Cheng KJ, Geesey GG et al (1987) Bacterial biofilms in nature and disease. Ann Rev Microbiol 41(1):435–464

    Article  CAS  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322

    Article  CAS  PubMed  Google Scholar 

  • Dalgaard P, Gram L, Huss HH (1993) Spoilage and shelf-life of cod fillets packed in vacuum or modified atmospheres. Int J Food Microbiol 19(4):283–294

    Article  CAS  PubMed  Google Scholar 

  • Delbarre-ladrat C, Chéret R, Taylor R et al (2006) Trends in postmortem aging in fish: understanding of proteolysis and disorganization of the myofibrillar structure. Crit Rev Food Sci Nutr 46(5):409–421

    Article  CAS  PubMed  Google Scholar 

  • Du SP, Zhang ZH, Xiao LL et al (2016) Acidic electrolyzed water as a novel transmitting medium for high hydrostatic pressure reduction of bacterial loads on shelled fresh shrimp. Front Microbiol 7:305

    PubMed  PubMed Central  Google Scholar 

  • Dugo G, Mondello L, Costa R et al (2017) Potential use of proteomics in shellfish aquaculture: from assessment of environmental toxicity to evaluation of seafood quality and safety. Curr Org Chem 21(5):402–425

    Article  CAS  Google Scholar 

  • Emborg J, Laursen BG, Rathjen T et al (2002) Microbial spoilage and formation of biogenic amines in fresh and thawed modified atmosphere-packed salmon (salmo salar) at 2 °C. J Appl Microbiol 92(4):790–799

    Article  CAS  PubMed  Google Scholar 

  • Fan W, Run-Ze FU, Shen J et al (2015) Changes of Patinopecten yessoensis microbial ecology and nutrition components during the process of depuration. Sci Technol Food Ind 36(19):78–83

    CAS  Google Scholar 

  • FAOSTAT (2016) World fisheries and aquaculture status in 2016: contributing to the full realization of food and nutritional safety, Rome, 200

    Google Scholar 

  • Feliciano L, Lee J, Lopes JA et al (2010) Efficacy of sanitized ice in reducing bacterial load on fish fillet and in the water collected from the melted ice. J Food Sci 75(4):M231–M238

    Article  CAS  PubMed  Google Scholar 

  • Fisheries Bureau of the Ministry of Agriculture (2002) China Fisheries Yearbook. China Agriculture Press

    Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633

    Article  CAS  PubMed  Google Scholar 

  • Ghaly AE, Dave D, Budge S et al (2010) Fish spoilage mechanisms and preservation techniques: review. Am J Appl Sci 7(7):859–877

    Article  CAS  Google Scholar 

  • Gram L, Dalgaard P (2002) Fish spoilage bacteria–problems and solutions. Curr Opin Biotechnol 13(3):262–266

    Article  CAS  PubMed  Google Scholar 

  • Gram L, Huss HH (2000) Fresh and processed fish and shellfish

    Google Scholar 

  • Han Q, Song XY, Zhang ZH et al (2017) Removal of foodborne pathogen biofilms by acidic electrolyzed water. Front Microbiol 8:988

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108

    Article  CAS  PubMed  Google Scholar 

  • Hao J, Wu T, Li H et al (2016) Differences of bactericidal efficacy on Escherichia coli, Staphylococcus aureus, and Bacillus subtilis, of slightly and strongly acidic electrolyzed water. Food Bioprocess Technol 10:1–10

    Google Scholar 

  • Hoiby N, Bjarnsholt T, Givskov M et al (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob AG 35:322e332

    Article  CAS  Google Scholar 

  • Huang YR, Hung YC, Hsu SY et al (2008) Application of electrolyzed water in the food industry. Food Control 19:329–345

    Article  CAS  Google Scholar 

  • Kasai H, Kawana K, Labaiden M et al (2011) Elimination of Escherichia coli from oysters using electrolyzed seawater. Aquaculture 319(3):315–318

    Article  CAS  Google Scholar 

  • Khazandi M, Deo P, Ferro S et al (2017) Efficacy evaluation of a new water sanitizer for increasing the shelf life of Southern Australian King George whiting and Tasmanian Atlantic Salmon fillets. Food Microbiol 68:51–60

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Hung YC, Brackett RE et al (2001) Inactivation of Listeria monocytogenes, biofilms by electrolyzed oxidizing water. J Food Process Preserv 25(2):91–100

    Article  Google Scholar 

  • Kim WT, Lim YS, Shin IS et al (2006) Use of electrolyzed water ice for preserving freshness of pacific saury (cololabis saira). J Food Prot 69(9):2199–2204

    Article  PubMed  Google Scholar 

  • Klausen M, Heydorn A, Ragas P, Lambertsen L et al (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511–1524

    Article  CAS  PubMed  Google Scholar 

  • Koo H, Falsetta ML, Klein MI (2013) The exopolysaccharide matrix a virulence determinant of cariogenic biofilm. J Dent Res 92(12):1065–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar CG, Anand SK (1998) Significance of microbial biofilms in food industry: a review. Int J Food Microbiol 42(1):9–27

    Article  CAS  PubMed  Google Scholar 

  • Lenz CA, Kai R, Knorr D et al (2015) High pressure thermal inactivation of clostridium botulinum type e endospores—kinetic modeling and mechanistic insights. Front Microbiol 6:652

    Article  PubMed  PubMed Central  Google Scholar 

  • Li G (2016) Sterilization process of slightly acidic electrolyzed water in the purification of Japanese Scallop. Guangdong Ocean University

    Google Scholar 

  • Li JB, Lin T, Liao C et al (2013) Effect of physicochemical properties of electrolyzed water ice on inactivation of Vibrio parahaemolyticus during storage. J Food Sci Biotechnol 32(11):1169–1175

    CAS  Google Scholar 

  • Lin T, Wang JJ, Li JB et al (2013a) Use of acidic electrolyzed water ice for preserving the quality of shrimp. J Agric Food Chem 61(36):8695–8702

    Article  CAS  PubMed  Google Scholar 

  • Lin T, Wang JJ, Pan YJ et al (2013b) Comparison of the bacterial activity of acidic electrolyzed water against foodborne pathogenic bacteria in pure culture and foods. Food Sci 34(15):69–74

    CAS  Google Scholar 

  • Liu SY, Liu JR, Ma YS (2014) Analysis of intestinal microflora in all stages of the live delivery of Scallop. Fish Sci 33(10):000626–630

    CAS  Google Scholar 

  • Mccarthy S (2012) Efficacy of electrolyzed oxidizing water against Listeria monocytogenes and Morganella morganii on conveyor belt and raw fish surfaces. Food Control 24(1–2):214–219

    Article  CAS  Google Scholar 

  • MikÅ¡-Krajnik M, Feng LX, Bang WS et al (2016) Inactivation of Listeria monocytogenes, and natural microbiota on raw salmon fillets using acidic electrolyzed water, ultraviolet light or/and ultrasounds. Food Control 74:54–60

    Article  CAS  Google Scholar 

  • Novotny L, Dvorska L, Lorencova A et al (2004) Fish: a potential source of bacterial pathogens for human beings: a review. Veterinární Medicína 49(9):343–358

    Article  Google Scholar 

  • Park SY, Ha SD (2015) Reduction of Escherichia coli, and Vibrio parahaemolyticus, counts on freshly sliced shad (Konosirus punctatus) by combined treatment of slightly acidic electrolyzed water and ultrasound using response surface methodology. Food Bioprocess Technol 8(8):1762–1770

    Article  Google Scholar 

  • Phuvasate S, Su YC (2010) Effects of electrolyzed oxidizing water and ice treatments on reducing histamine-producing bacteria on fish skin and food contact surface. Food Control 21(3):286–291

    Article  CAS  Google Scholar 

  • Ray B, Bhunia R (2004) Fundamental food microbiology. CRC Press, Boca Raton

    Google Scholar 

  • Sevenich R, Bark F, Kleinstueck E, Crews C et al (2015) The impact of high pressure thermal sterilization on the microbiological stability and formation of food processing contaminants in selected fish systems and baby food puree at pilot scale. Food Control 50:539–547

    Article  CAS  Google Scholar 

  • Stoodley P, Sauer K, Costerton Davies DG et al (2002) Biofilms as complex differentiated communities. Ann Rev Microbiol 56:187–209

    Article  CAS  Google Scholar 

  • Sun JL, Zhang SK, Chen JY et al (2012) Efficacy of acidic and basic electrolyzed water in eradicating Staphylococcus aureus biofilm. Can J Microbiol 58(4):448–454

    Article  CAS  PubMed  Google Scholar 

  • Sun JP, Zhao L, Yu WY et al (2017) Effect of acidic electrolyzed water on polyphenoloxidase from Litopenaeus vannamei. Food Sci 39(9):7–12

    Google Scholar 

  • Vázquez-Sánchez D, Cabo ML, Ibusquiza PS et al (2014) Biofilm-forming ability and resistance to industrial disinfectants of Staphylococcus aureus isolated from fishery products. Food Control 39:8–16

    Article  CAS  Google Scholar 

  • Wang JJ, Zhang ZH, Li JB et al (2014a) Modeling Vibrio parahaemolyticus inactivation by acidic electrolyzed water on cooked shrimp using response surface methodology. Food Control 36(1):273–279

    Article  CAS  Google Scholar 

  • Wang JJ, Sun WS, Jin MT et al (2014b) Fate of Vibrio parahaemolyticus on shrimp after acidic electrolyzed water treatment. Int J Food Microbiol 179(22):50–56

    Article  CAS  PubMed  Google Scholar 

  • Wang JJ, Lin T, Li JB et al (2014c) Effect of acidic electrolyzed water ice on quality of shrimp in dark condition. Food Control 35(1):207–212

    Article  CAS  Google Scholar 

  • Wang M, Wang JJ, Sun XH et al (2015a) Preliminary mechanism of acidic electrolyzed water ice on improving the quality and safety of shrimp. Food Chem 176:333–341

    Article  CAS  PubMed  Google Scholar 

  • Wang XL, Li YQ, Li QG et al (2015b) Research on spatial-temporal aggregation of China’s environment pollution and food safety: the interaction between emergency environmental accidents and foodborne disease outbreaks. China’s Population, Res Environ 25(12):53–61

    CAS  Google Scholar 

  • Wolcott RD, Rhoads DD, Dowd SE (2008) Biofilms and chronic wound inflammation. J wound care 17(8):333–341.

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Wen J, Ma Y et al (2014) Epidemiology of foodborne disease outbreaks caused by Vibrio parahaemolyticus, china, 2003–2008. Food Control 46(46):197–202

    Article  Google Scholar 

  • Xiao J, Klein MI, Falsetta ML et al (2012) The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. PLoS Pathogen 8(4):e1002623

    Article  CAS  Google Scholar 

  • Xie J, Sun XH, Pan YJ et al (2012a) Combining basic electrolyzed water pretreatment and mild heat greatly enhanced the efficacy of acidic electrolyzed water against Vibrio parahaemolyticus, on shrimp. Food Control 23(2):320–324

    Article  CAS  Google Scholar 

  • Xie J, Sun XH, Pan YJ et al (2012b) Physicochemical properties and bactericidal activities of acidic electrolyzed water used or stored at different temperatures on shrimp. Food Res Int 47(2):331–336

    Article  CAS  Google Scholar 

  • Xuan XT, Fan YF, Ling JG et al (2017) Preservation of squid by slightly acidic electrolyzed water ice. Food Control 73:1483–1489

    Article  CAS  Google Scholar 

  • Yao X, Zhao AJ, Du SP et al (2017) The effect of acid electrolysis water ice on the quality of small yellow croaker and the change of enzyme activity in muscle tissue. Food Sci 38(13):244–250

    Google Scholar 

  • Zhang CL, Chen X, Xia XD et al (2017) Viability assay of E. coli o157: h7 treated with electrolyzed oxidizing water using flow cytometry. Food Control 88:47–53

    Article  CAS  Google Scholar 

  • Zeng XP, Tang WW, Ye GQ et al (2010) Studies on disinfection mechanism of electrolyzed oxidizing water on E. coli and Staphylococcus aureus. J Food Sci 75(5):M253–M260

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wang H, Li N et al (2015) High CO2-modified atmosphere packaging for extension of shelf-life of chilled yellow-feather broiler meat: a special breed in asia. LWT—Food Sci Technol 64(2):1123–1129

    Article  CAS  Google Scholar 

  • Zhao AJ, Wang M, Zhao F et al (2016) Application of acidic electrolyzed water ice in sterilization and preservation of shrimp. Modern Food Sci Technol 32(3):126–131, 245

    Google Scholar 

  • Zhou R, Liu Y, Xie J et al (2011) Effects of combined treatment of electrolysed water and chitosan on the quality attributes and myofibril degradation in farmed obscure puffer fish (takifugu obscurus) during refrigerated storage. Food Chem 129(4):1660–1666

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd. and Zhejiang University Press, Hangzhou

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, Y., Zhang, Z., Malakar, P.K., Wang, S., Zhao, L. (2019). Application of Electrolyzed Water on Aquatic Product. In: Ding, T., Oh, DH., Liu, D. (eds) Electrolyzed Water in Food: Fundamentals and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-3807-6_6

Download citation

Publish with us

Policies and ethics