Skip to main content

Application of Electrolyzed Water in Red Meat and Poultry Processing

  • Chapter
  • First Online:
Electrolyzed Water in Food: Fundamentals and Applications

Abstract

Foods of animal origin, such as red meat and poultry products, are primary sources of superior protein for humans. With the production and consumption of these products increasing rapidly in recent decades, microbial safety and food quality are vital issues. Electrolyzed water (EW) as a sanitizer has awakened high interest in the food industry of many countries. The use of EW to decontaminate fresh red meat, ready-to-eat meat, poultry and shell eggs has been effective in reducing pathogenic microorganisms. Moreover, EW presents many advantages over traditional decontaminants; it provides effective antimicrobial activity and is environmentally friendly, simple to handle and relatively inexpensive. However, no complete elimination of pathogens on red meat and chicken meat was obtained after treatment of the meats with EW . This result probably occurs because organic matter and blood residue were present. This chapter provides a brief overview of how EW treatment affects foods of animal origin, especially the microbial safety and the physicochemical and sensory qualities of the food.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achiwa N, Nishio T (2003) The use of electrolyzed water for sanitation control of eggshells and GP center. Food Sci Technol Res 9(1):100–103

    Article  Google Scholar 

  • Al-Haq MI, Sugiyama J, Isobe S (2005) Applications of electrolyzed water in agriculture and food industries. Food Sci Technol Res 11(2):135–150

    Google Scholar 

  • Al-Holy MA, Rasco BA (2015) The bactericidal activity of acidic electrolyzed oxidizing water against Escherichia coli, O157:H7, Salmonella typhimurium, and Listeria monocytogenes on raw fish, chicken and beef surfaces. Food Control 54:317–321

    Article  CAS  Google Scholar 

  • Alonso-Hernando A, Guevara-Franco JA, Alonso-Calleja C et al (2013) Effect of the temperature of the dipping solution on the antimicrobial effectiveness of various chemical decontaminants against pathogenic and spoilage bacteria on poultry. J Food Prot 76(5):833–842

    Article  CAS  PubMed  Google Scholar 

  • Anang DM, Rusul G, Bakar J et al (2007) Effects of lactic acid and lauricidin on the survival of Listeria monocytogenes, Salmonella enteritidis and Escherichia coli O157:H7 in chicken breast stored at 4 °C. Food Control 18(8):961–969

    Article  CAS  Google Scholar 

  • Aurass P, Prager R, Flieger A (2011) EHEC/EAEC O104:H4 strain linked with the 2011 German outbreak of haemolytic uremic syndrome enters into the viable but non-culturable state in response to various stresses and resuscitates upon stress relief. Environ Microbiol 13(12):3139–3148

    Article  PubMed  Google Scholar 

  • Ayebah B, Hung YC, Kim C et al (2006) Efficacy of electrolyzed water in the inactivation of planktonic and biofilm listeria monocytogenes in the presence of organic matter. J Food Prot 69(9):2143–2150

    Article  PubMed  Google Scholar 

  • Bell MF, Marshall RT, Anderson ME (1986) Microbiological and sensory tests of beef treated with acetic and formic acids. J Food Prot 49(3):207–210

    Article  CAS  PubMed  Google Scholar 

  • Bialka KL, Demirci A, Knabel SJ et al (2004) Efficacy of electrolyzed oxidizing water for the microbial safety and quality of eggs. J Poult Sci 83(12):2071–2078

    Article  CAS  Google Scholar 

  • Bosilevac JM, Shackelford SD, Brichta DM et al (2005) Efficacy of ozonated and electrolyzed oxidative waters to decontaminate hides of cattle before slaughter. J Food Prot 68(7):1393–1398

    Article  PubMed  Google Scholar 

  • Botsoglou NA, Christaki E, Fletouris DJ et al (2002) The effect of dietary oregano essential oil on lipid oxidation in raw and cooked chicken during refrigerated storage. Meat Sci 62(2):259–265

    Article  CAS  PubMed  Google Scholar 

  • Botta C, Ferrocino I, Cavallero MC et al (2018) Potentially active spoilage bacteria community during the storage of vacuum packaged beefsteaks treated with aqueous ozone and electrolyzed water. Int J Food Microbiol 266:337–345

    Article  CAS  PubMed  Google Scholar 

  • Brychcy E, Jarmoluk A, Marycz K (2015a) Impact of low-concentrated acidic electrolysed water obtained by membrane electrolysis on the decontamination of meat microbiota. B Vet I Pulawy 59(3):369–376

    Article  CAS  Google Scholar 

  • Brychcy E, Król Å», Kulig D et al (2016) The effect of carrageenan and gelatine hydrosols incorporated with acidic electrolysed water on surface microbiota and quality changes on pork meat. Int J Food Sci Tech 51(7):1618–1629

    Article  CAS  Google Scholar 

  • Brychcy E, Malik M, Drożdżewski P et al (2015b) Low-concentrated acidic electrolysed water treatment of pork: inactivation of surface microbiota and changes in product quality. Int J Food Sci Tech 50(11):2340–2350

    Article  CAS  Google Scholar 

  • Byun JS, Min JS, Kim IS et al (2003) Comparison of indicators of microbial quality of meat during aerobic cold storage. J Food Prot 66(9):1733–1737

    Article  PubMed  Google Scholar 

  • Cao W, Zhu ZW, Shi ZX et al (2009) Efficiency of slightly acidic electrolyzed water for inactivation of Salmonella enteritidis and its contaminated shell eggs. Int J Food Microbiol 130(2):88–93

    Article  CAS  PubMed  Google Scholar 

  • Carlson BA, Ruby J, Smith GC et al (2008) Comparison of antimicrobial efficacy of multiple beef hide decontamination strategies to reduce levels of Escherichia coli O157:H7 and Salmonella. J Food Prot 71(11):2223–2227

    Article  PubMed  Google Scholar 

  • Chantarapanont W, Berrang ME, Frank JF (2004) Direct microscopic observation of viability of Campylobacter jejuni on chicken skin treated with selected chemical sanitizing agents. J Food Prot 46(3):1146–1152

    Article  Google Scholar 

  • Comes JE, Beelman RB (2002) Addition of fumaric acid and sodium benzoate as an alternative method to achieve a 5-log reduction of Escherichia coli O157:H7 populations in apple cider. J Food Prot 65(3):476–483

    Article  CAS  PubMed  Google Scholar 

  • Cygnarowicz-Provost M, Whiting RC, Craig JC (1994) Steam surface pasteurization of beef frankfurters. J Food Sci 59(1):1–5

    Article  Google Scholar 

  • Ding T, Rahman SME, Oh DH (2011) Inhibitory effects of low concentration electrolyzed water and other sanitizers against foodborne pathogens on oyster mushroom. Food Control 22(2):318–322

    Article  CAS  Google Scholar 

  • Ding T, Rahman SME, Purev U et al (2010) Modelling of Escherichia coli O157:H7 growth at various storage temperatures on beef treated with electrolyzed oxidizing water. J Food Eng 97(4):497–503

    Article  Google Scholar 

  • Duan D, Wang H, Xue S et al (2017) Application of disinfectant sprays after chilling to reduce the initial microbial load and extend the shelf-life of chilled chicken carcasses. Food Control 75:70–77

    Article  Google Scholar 

  • Elias RJ, Kellerby SS, Decker EA (2008) Antioxidant activity of proteins and peptides. Crit Rev Food Sci 48(5):430–441

    Article  CAS  Google Scholar 

  • Fabrizio KA, Cutter CN (2004) Comparison of electrolyzed oxidizing water with other antimicrobial interventions to reduce pathogens on fresh pork. Meat Sci 68(3):463–468

    Article  CAS  PubMed  Google Scholar 

  • Fabrizio KA, Cutter CN (2005) Application of electrolyzed oxidizing water to reduce Listeria monocytogenes on ready-to-eat meats. Meat Sci 71(2):327–333

    Article  CAS  PubMed  Google Scholar 

  • Fabrizio KA, Sharma RR, Demirci A et al (2002) Comparison of electrolyzed oxidizing water with various antimicrobial interventions to reduce Salmonella species on poultry. J Poult Sci 81(10):1598–1605

    Article  CAS  Google Scholar 

  • FAO (2006) Databases: food balance sheets. Available via http://www.fao.org/faostat/en/#country. Accessed 16 December 2018

  • Fasenko GM, O’Dea Christopher EE, Mcmullen LM (2009) Spraying hatching eggs with electrolyzed oxidizing water reduces eggshell microbial load without compromising broiler production parameters. J Poult Sci 88(5):1121–1127

    Article  CAS  Google Scholar 

  • Friedman CR, Neimann J, Wegener HC et al (2000) Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations. In: Nachamkin I, Blaser MJ (eds) Campylobacter, 2nd edn. ASM, Washington, DC

    Google Scholar 

  • Gatellier P, Gomez S, Gigaud V et al (2007) Use of a fluorescence front face technique for measurement of lipid oxidation during refrigerated storage of chicken meat. Meat Sci 76(3):543–547

    Article  CAS  PubMed  Google Scholar 

  • Gill CO (1983) Meat spoilage and evaluation of the potential storage life of fresh meat. J Food Prot 46(5):444–452

    Article  PubMed  Google Scholar 

  • Göksoy EO, James C, Corry JEL (2000) The effect of short-time microwave exposures on inoculated pathogens on chicken and the shelf-life of uninoculated chicken meat. J Food Eng 45(3):153–160

    Article  Google Scholar 

  • Golden DA, Beuchat LR, Brackett RE (1988) Evaluation of selective direct plating media for their suitability to recover un-injured, heat-injured, and freeze-injured Listeria monocytogenes from foods. Appl Environ Microbiol 54(6):1451–1456

    Google Scholar 

  • González-Fandos E, Dominguez JL (2007) Effect of potassium sorbate washing on the growth of Listeria monocytogenes on fresh poultry. Food Control 18(7):842–846

    Article  Google Scholar 

  • Han D, Hung YC, Wang L (2018) Evaluation of the antimicrobial efficacy of neutral electrolyzed water on pork products and the formation of viable but nonculturable (VBNC) pathogens. Food Microbiol 73:227–236

    Article  CAS  PubMed  Google Scholar 

  • Hati S, Mandal S, Minz P et al (2012) Electrolyzed oxidized water (EOW): non-thermal approach for decontamination of food borne microorganisms in food industry. Food Nutr Sci 3(6):760–768

    Article  CAS  Google Scholar 

  • Holmer SF, McKeith RO, Boler DD et al (2009) The effect of pH on shelf-life of pork during aging and simulated retail display. Meat Sci 82(1):86–93

    Article  CAS  PubMed  Google Scholar 

  • Hricova D, Stephan R, Zweifel C (2008) Electrolyzed water and its application in the food industry. J Food Prot 71(9):1934–1947

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Hung Y, Hsu S et al (2008) Application of electrolyzed water in the food industry. Food Control 19(4):329–345

    Article  Google Scholar 

  • Humphrey TJ (1994) Contamination of egg shell and contents with Salmonella enteritidis: a review. Int J Food Microbiol 21(1–2):31–40

    Article  CAS  PubMed  Google Scholar 

  • Hwang CA, Beuchat LR (1995) Efficacy of selected chemicals for killing pathogenic and spoilage microorganisms on chicken skin. J Food Prot 58(1):19–23

    Article  CAS  PubMed  Google Scholar 

  • ICMSF (1986) Microorganisms in Foods 2: sampling for microbiological analysis: principles and scientific applications. University of Toronto, Toronto

    Google Scholar 

  • Jacxsens L, Devlieghere F, Ragaert P et al (2003) Relation between microbiological quality, metabolite production and sensory quality of equilibrium modified atmosphere packaged fresh-cut produce. Int J Food Microbiol 83(3):263–280

    Article  CAS  PubMed  Google Scholar 

  • Kalchayanand N, Arthur TM, Bosilevac JM et al (2008) Evaluation of various antimicrobial interventions for the reduction of Escherichia coli O157:H7 on bovine heads during processing. J Food Prot 71(3):621–624

    Article  PubMed  Google Scholar 

  • Kang SC, Kim MJ, Choi UK (2007) Shelf-life extension of fresh-cut iceberg lettuce (Lactuca satival) by different antimicrobial films. J Microbiol Biotechnol 17(8):1284–1290

    PubMed  Google Scholar 

  • Kim C, Hung YC, Brackett RE (2000) Efficacy of electrolyzed oxidizing (EO) and chemically modified water on different types of foodborne pathogens. Int J Food Microbiol 61(2):199–207

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Hung YC, Russell SM (2005) Efficacy of electrolyzed water in the prevention and removal of fecal material attachment and its microbicidal effectiveness during simulated industrial poultry processing. Poultry Sci 84(11):1778–1784

    Article  CAS  Google Scholar 

  • Koohmaraie M, Arthur TM, Bosilevac JM et al (2005) Post-harvest interventions to reduce/eliminate pathogens in beef. Meat Sci 71(1):79–91

    Article  CAS  PubMed  Google Scholar 

  • Kreyenschmidt J, Hübner A, Beierle E et al (2010) Determination of the shelf life of sliced cooked ham based on the growth of lactic acid bacteria in different steps of the chain. J Appl Microbiol 108(2):510–520

    Article  CAS  PubMed  Google Scholar 

  • Lawrence TE, Dikeman ME, Hunt MC et al (2003) Effects of calcium salts on beef longissimus quality. Meat Sci 64(3):299–308

    Article  CAS  PubMed  Google Scholar 

  • Leistner L (2000) Basic aspects of food preservation by hurdle technology. Int J Food Microbiol 55(1):181–186

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Wu C (2012) Reductions of Salmonella enterica on chicken breast by thymol, acetic acid, sodium dodecyl sulfate or hydrogen peroxide combinations as compared to chlorine wash. Int J Food Microbiol 152(1):31–34

    Article  CAS  PubMed  Google Scholar 

  • Mansur AR, Tango CN, Kim GH et al (2015) Combined effects of slightly acidic electrolyzed water and fumaric acid on the reduction of foodborne pathogens and shelf life extension of fresh pork. Food Control 47:277–284

    Article  CAS  Google Scholar 

  • Ma QJ, Li BM, Wang CY et al (2009) Efficiency of electrolyzed oxidizing water for inactivation of salmonella spp. and inoculated shell eggs. Int J Food Eng 5(3):64–67

    Google Scholar 

  • Marenzi C (1986) Proper meat storage prevents spoilage. Poultry-Misset 6:12–15

    Google Scholar 

  • Mies PD, Covington BR, Harris KB et al (2004) Decontamination of cattle hides prior to slaughter using washes with and without antimicrobial agents. J Food Prot 67(3):579–582

    Article  CAS  PubMed  Google Scholar 

  • Muriana PM, Quimby W, Davidson CA et al (2002) Post-package pasteurization of ready-to-eat deli meats by submersion heating for reduction of Listeria monocytogenes. J Food Prot 65(6):963–969

    Article  CAS  PubMed  Google Scholar 

  • Naveena BM, Sen AR, Muthukumar M et al (2006) The effect of lactates on the quality of microwave-cooked chicken patties during storage. J Food Sci 71(9):603–608

    Article  CAS  Google Scholar 

  • Ni L, Cao W, Zheng WC et al (2014) Efficacy of slightly acidic electrolyzed water for reduction of foodborne pathogens and natural microflora on shell eggs. Food Sci Technol Res 20(1):93–100

    Article  CAS  Google Scholar 

  • Nishimura T, Kato H (1988) Taste of free amino acids and peptides. Food Rev Int 4(2):175–194

    Article  Google Scholar 

  • Northcutt J, Smith D, Ingram KD et al (2007) Recovery of bacteria from broiler carcasses after spray washing with acidified electrolyzed water or sodium hypochlorite solutions. Poultry Sci 86(10):2239–2244

    Article  CAS  Google Scholar 

  • Nychas GJE, Marshall DL, Sofos JN et al (2013) Meat, poultry and seafood. In: Doyle MP, Buchanan RL (eds) Food microbiology: fundamentals and frontiers, 4th edn. ASM, Washington, DC

    Google Scholar 

  • Oomori T, Oka T, Inuta T et al (2005) The efficiency of disinfection of acidic electrolyzed water in the presence of organic materials. Anal Sci 16(4):365–369

    Article  Google Scholar 

  • Park H, Hung YC, Brackett RE (2002) Antimicrobial effect of electrolyzed water for inactivating Campylobacter jejuni during poultry washing. Int J Food Microbiol 72(1–2):77–83

    Article  CAS  PubMed  Google Scholar 

  • Park CM, Hung YC, Lin CS et al (2005) Efficacy of electrolyzed water in inactivating Salmonella enteritidis and Listeria monocytogenes on shell eggs. J Food Prot 68(5):986–990

    Article  PubMed  Google Scholar 

  • Podolak R, Zayas J, Kastner C et al (1996) Reduction of bacterial populations on vacuum-packaged ground beef patties with fumaric and lactic acids. J Food Prot 59(10):1037–1040

    Article  CAS  PubMed  Google Scholar 

  • Rahman SME, Ding T, Oh DH (2010a) Effectiveness of low concentration electrolyzed water to inactivate foodborne pathogens under different environmental conditions. Int J Food Microbiol 139(3):147–153

    Article  CAS  PubMed  Google Scholar 

  • Rahman SME, Ding T, Oh DH (2010b) Inactivation effect of newly developed low concentration electrolyzed water and other sanitizers against microorganisms on spinach. Food Control 21(10):1383–1387

    Article  CAS  Google Scholar 

  • Rahman SME, Khan I, Oh DH (2016) Electrolyzed water as a novel sanitizer in the food industry: current trends and future perspectives. Compr Rev Food Sci F 15(3):471–490

    Article  Google Scholar 

  • Rahman SME, Park J, Song KB et al (2012) Effects of slightly acidic low concentration electrolyzed water on microbiological, physicochemical, and sensory quality of fresh chicken breast meat. J Food Sci 77(1):M35–M41

    Article  CAS  PubMed  Google Scholar 

  • Rahman SME, Wang J, Oh DH (2013) Synergistic effect of low concentration electrolyzed water and calcium lactate to ensure microbial safety, shelf life and sensory quality of fresh pork. Food Control 30(1):176–183

    Article  CAS  Google Scholar 

  • Rigdon M, Hung YC, Stelzleni AM (2017) Evaluation of alkaline electrolyzed water to replace traditional phosphate enhancement solutions: effects on water holding capacity, tenderness, and sensory characteristics. Meat Sci 123:211–218

    Article  CAS  PubMed  Google Scholar 

  • Rousset S, Renerre M (1991) Effect of CO2 or vacuum packaging on normal and high pH meat shelf-life. Int J Food Sci Tech 26(6):641–652

    Article  Google Scholar 

  • Russell SM (2003) The effect of electrolyzed oxidative water applied using electrostatic spraying on pathogenic and indicator bacteria on the surface of eggs. Poultry Sci 82(1):158–162

    Article  CAS  Google Scholar 

  • Ryser ET, Marth EH (eds) (1999) Listeria, listeriosis and food safety. Marcel Dekker, New York

    Google Scholar 

  • Selgas MD, Salazar ML, García ML (2009) Usefulness of calcium lactate, citrate and gluconate for calcium enrichment of dry fermented sausages. Meat Sci 82(4):478–480

    Article  CAS  PubMed  Google Scholar 

  • Serpen A, Gökmen V, Fogliano V (2012) Total antioxidant capacities of raw and cooked meats. Meat Sci 90(1):60–65

    Article  CAS  PubMed  Google Scholar 

  • Shimamura Y, Shinke M, Hiraishi M et al (2016) The application of alkaline and acidic electrolyzed water in the sterilization of chicken breasts and beef liver. Food Sci Nutr 4(3):431–440

    Article  CAS  PubMed  Google Scholar 

  • Stopforth JD, Yoon Y, Belk KE et al (2004) Effect of simulated spray chilling with chemical solutions on acid-habituated and non-acid-habituated Escherichia coli O157:H7 cells attached to beef carcass tissue. J Food Prot 67(10):2099–2106

    Article  CAS  PubMed  Google Scholar 

  • Tango CN, Mansur AR, Kim GH et al (2014) Synergetic effect of combined fumaric acid and slightly acidic electrolysed water on the inactivation of food-borne pathogens and extending the shelf life of fresh beef. J Appl Microbiol 117(6):1709–1720

    Article  CAS  PubMed  Google Scholar 

  • USDA-FSIS (2014) FSIS Compliance guideline: controlling Listeria monocytogenes in Post-Lethality Exposed Ready-to-Eat Meat and Poultry Products. Available via https://www.fsis.usda.gov/wps/portal/fsis/topics/regulatory-compliance/compliance-guides-index/bacteria-guidance. Accessed 16 December 2018

  • Veasey S, Muriana PM (2016) Evaluation of electrolytically-generated hypochlorous acid (‘Electrolyzed Water’) for sanitation of meat and meat-contact surfaces. Foods 5(2):42

    Article  PubMed Central  Google Scholar 

  • Venkitanarayanan KS, Ezeike GO, Hung YC et al (1999a) Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on plastic kitchen cutting boards by electrolyzed oxidizing water. J Food Prot 62(8):857–860

    Article  CAS  PubMed  Google Scholar 

  • Venkitanarayanan KS, Ezeike GO, Hung YC et al (1999b) Efficacy of electrolyzed oxidizing water for inactivating Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes. Appl Environ Microb 65(9):4276–4279

    CAS  Google Scholar 

  • Wang J, Rahman SME, Park MS et al (2012) Modeling the response of Listeria monocytogenes at various storage temperatures in pork with/without electrolyzed water treatment. Food Sci Biotechnol 21(6):1549–1555

    Article  Google Scholar 

  • Watanabe A, Ueda Y, Higuchi M (2004) Effects of slaughter age on the levels of free amino acids and dipeptides in fattening cattle. Anim Sci J 75(4):361–367

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhong Bai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd. and Zhejiang University Press, Hangzhou

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bai, Y., Niu, L., Xiang, Q. (2019). Application of Electrolyzed Water in Red Meat and Poultry Processing. In: Ding, T., Oh, DH., Liu, D. (eds) Electrolyzed Water in Food: Fundamentals and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-3807-6_5

Download citation

Publish with us

Policies and ethics