Skip to main content

Decontamination Efficacy and Principles of Electrolyzed Water

  • Chapter
  • First Online:

Abstract

Electrolyzed water (EW) is a novel bactericide in the food industry, which has received increasing attention. It has been shown to be an effective microorganism inactivation agent without bringing significant environmental hazard. EW parameters and microorganism properties can greatly influence the decontamination efficacy of EW . This chapter aims to review the influencing factors on microbial decontamination of EW . In addition, the mechanisms underlying the inactivation effect of EW on microbes were summarized. Apart from the lethal effect, the potential actions of EW on physiological states of microbes were also discussed. The extended applications of EW on spore inactivation and microbial toxin degradation were covered in the last part of this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abadias M, Usall J, Oliveira M et al (2008) Efficacy of neutral electrolyzed water (NEW) for reducing microbial contamination on minimally-processed vegetables. Int J Food Microbiol 123(1–2):151–158

    Article  CAS  PubMed  Google Scholar 

  • Afari GK, Hung YC (2018a) Detection and verification of the viable but nonculturable (VBNC) state of Escherichia coli O157:H7 and Listeria monocytogenes using flow cytometry and standard plating. J Food Sci 83(7):1913–1920

    Article  CAS  PubMed  Google Scholar 

  • Afari GK, Hung YC (2018b) A meta-analysis on the effectiveness of electrolyzed water treatments in reducing foodborne pathogens on different foods. Food Control 93:150–164

    Article  CAS  Google Scholar 

  • Arevalos-Sánchez M, Regalado C, Martin SE, Domínguez-Domínguez J, García-Almendárez BE (2012) Effect of neutral electrolyzed water and nisin on Listeria monocytogenes biofilms, and on listeriolysin O activity. Food Control 24(1–2):116–122

    Article  CAS  Google Scholar 

  • Arevalos-Sánchez M, Regalado C, Martin SE et al (2013) Effect of neutral electrolyzed water on lux-tagged Listeria monocytogenes EGDe biofilms adhered to stainless steel and visualization with destructive and non-destructive microscopy techniques. Food Control 34(2):472–477

    Article  CAS  Google Scholar 

  • Ayebah B, Hung YC (2005) Electrolyzed water and its corrosiveness on various surface materials commonly found in food processing facilities. J Food Process Eng 28(3):247–264

    Article  Google Scholar 

  • Ayebah B, Hung YC, Frank JF (2005) Enhancing the bactericidal effect of electrolyzed water on Listeria monocytogenes biofilms formed on stainless steel. J Food Protect 68(7):1375–1380

    Article  Google Scholar 

  • Ayebah B, Hung YC, Kim C et al (2006) Efficacy of electrolyzed water in the inactivation of planktonic and biofilm Listeria monocytogenes in the presence of organic matter. J Food Prot 69(9):2143–2150

    Article  PubMed  Google Scholar 

  • Bayles KW (2014) Bacterial programmed cell death: making sense of a paradox. Nat Rev Microbiol 12(1):63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao W, Zhu ZW, Shi ZX et al (2009) Efficiency of slightly acidic electrolyzed water for inactivation of Salmonella enteritidis and its contaminated shell eggs. Int J Food Microbiol 130(2):88–93

    Article  CAS  PubMed  Google Scholar 

  • Chen JJ, Deng SG, Lin X et al (2014) Germicidal efficacy of neutral electrolyzed water against the apparatus for the production of aquatic products. Sci Tech Food Ind 1(35):160–163

    Google Scholar 

  • Deza MA, Araujo M, Garrido MJ (2003) Inactivation of Escherichia coli O157:H7, Salmonella enteritidis and Listeria monocytogenes on the surface of tomatoes by neutral electrolyzed water. Lett Appl Microbiol 37(6):482–487

    Article  CAS  PubMed  Google Scholar 

  • Deza MA, Araujo M, Garrido MJ (2005) Inactivation of Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa and Staphylococcus aureus on stainless steel and glass surfaces by neutral electrolysed water. Lett Appl Microbiol 40(5):341–346

    Article  CAS  PubMed  Google Scholar 

  • Deza MA, Araujo M, Garrido MJ (2007) Efficacy of neutral electrolyzed water to inactivate Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus on plastic and wooden kitchen cutting boards. J Food Protect 70(5):1070

    Google Scholar 

  • Ding T, Rahman SME, Oh D (2011) Inhibitory effects of low concentration electrolyzed water and other sanitizers against foodborne pathogens on oyster mushroom. Food Control 22(2):318–322

    Article  CAS  Google Scholar 

  • Ding T, Xuan X, Li J et al (2016) Disinfection efficacy and mechanism of slightly acidic electrolyzed water on Staphylococcus aureus in pure culture. Food Control 60:505–510

    Article  CAS  Google Scholar 

  • Duan D, Liu G, Yao P et al (2016) The effects of organic compounds on inactivation efficacy of Artemia salina by neutral electrolyzed water. Ocean Eng 125:31–37

    Article  Google Scholar 

  • Escobedo-González R, Méndez-Albores A, Villarreal-Barajas T et al (2016) A theoretical study of 8-chloro-9-hydroxy-aflatoxin B1, the conversion product of aflatoxin B1 by neutral electrolyzed water. Toxins 8(7):225

    Article  PubMed Central  CAS  Google Scholar 

  • Fabrizio KA, Cutter CN (2003) Stability of electrolyzed oxidizing water and its efficacy against cell suspensions of Salmonella typhimurium and Listeria monocytogenes. J Food Protect 66(8):1379–1384

    Article  CAS  Google Scholar 

  • Fan S, Zhang F, Liu S et al (2013) Removal of aflatoxin B1 in edible plant oils by oscillating treatment with alkaline electrolysed water. Food Chem 141(3):3118–3123

    Article  CAS  PubMed  Google Scholar 

  • Forghani F, Park J, Oh D (2015) Effect of water hardness on the production and microbicidal efficacy of slightly acidic electrolyzed water. Food Microbiol 48:28–34

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Liu Z, Li X et al (2008) Sterilization mechanism and application of strong acidic electrolyzed water. Chin Agricult Sci Bull 24(7):393–399

    Google Scholar 

  • Guentzel JL, Lam KL, Callan MA et al (2008) Reduction of bacteria on spinach, lettuce, and surfaces in food service areas using neutral electrolyzed oxidizing water. Food Microbiol 25(1):36–41

    Article  CAS  PubMed  Google Scholar 

  • Han Q, Song X, Zhang Z et al (2017) Removal of foodborne pathogen biofilms by acidic electrolyzed water. Front Microbiol 8

    Google Scholar 

  • Han D, Hung YC, Wang L (2018a) Evaluation of the antimicrobial efficacy of neutral electrolyzed water on pork products and the formation of viable but nonculturable (VBNC) pathogens. Food Microbiol 73:227–236

    Article  CAS  PubMed  Google Scholar 

  • Han D, Hung YC, Bratcher CL et al (2018b) Formation of sublethally injured Yersinia enterocolitica, Escherichia coli O157:H7, and Salmonella enterica serovar enteritidis cells after neutral electrolyzed oxidizing water treatments. Appl Environ Microbiol 84(17):e01066–18

    Google Scholar 

  • Hao J, Wu T, Li H et al (2017) Differences of bactericidal efficacy on Escherichia coli, Staphylococcus aureus, and Bacillus subtilis of slightly and strongly acidic electrolyzed water. Food Bioprocess Technol 10(1):155–164

    Article  CAS  Google Scholar 

  • Hricova D, Stephan R, Zweifel C (2008) Electrolyzed water and its application in the food industry. J Food Protect 71(9):1934–1947

    Article  CAS  Google Scholar 

  • Huang Y, Hung Y, Hsu S et al (2008) Application of electrolyzed water in the food industry. Food Control 19(4):329–345

    Article  CAS  Google Scholar 

  • Hussain MS, Kwon M et al (2018) Effect of electrolyzed water on the disinfection of bacillus cereus biofilms: the mechanism of enhanced resistance of sessile cells in the biofilm matrix. J Food Protect 81(5):860–869

    Article  CAS  Google Scholar 

  • Izumi H, Inoue A (2018) Viability of sublethally injured coliform bacteria on fresh-cut cabbage stored in high CO2 atmospheres following rinsing with electrolyzed water. Int J Food Microbiol 266:207–212

    Article  CAS  PubMed  Google Scholar 

  • Jardon-Xicotencatl S, Díaz-Torres R, Marroquín-Cardona A et al (2015) Detoxification of aflatoxin-contaminated maize by neutral electrolyzed oxidizing water. Toxins 7(10):4294–4314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim C, Hung YC, Bracett RE (2000a) Roles of oxidation-reduction potential in electrolyzed oxidizing and chemically modified water for the inactivation of food-related pathogens. J Food Protect 63(1):19–24

    Article  CAS  Google Scholar 

  • Kim C, Hung YC, Brackett RE (2000b) Efficacy of electrolyzed oxidizing (EO) and chemically modified water on different types of foodborne pathogens. Int J Food Microbiol 61(2–3):199–207

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Hung YC, Brackett, RE et al (2001) Inactivation of Listeria monocytogenes biofilms by electrolyzed oxidizing water. J Food Process Pres 25(2):91–100

    Article  Google Scholar 

  • Koide S, Takeda JI, Shi J et al (2009) Disinfection efficacy of slightly acidic electrolyzed water on fresh cut cabbage. Food Control 20(3):294–297

    Article  CAS  Google Scholar 

  • Koide S, Shitanda D, Note M et al (2011) Effects of mildly heated, slightly acidic electrolyzed water on the disinfection and physicochemical properties of sliced carrot. Food Control 22(3–4):452–456

    Article  CAS  Google Scholar 

  • Koseki S, Yoshida K, Isobe S et al (2001) Decontamination of lettuce using acidic electrolyzed water. J Food Protect 64(5):652–658

    Article  CAS  Google Scholar 

  • Koseki S, Yoshida K, Kamitani Y et al (2003) Influence of inoculation method, spot inoculation site, and inoculation size on the efficacy of acidic electrolyzed water against pathogens on lettuce. J Food Protect 66(11):2010–2016

    Article  Google Scholar 

  • Koseki S, Yoshida K, Isobe S et al (2004) Efficacy of acidic electrolyzed water for microbial decontamination of cucumbers and strawberries. J Food Protect 67(6):1247–1251

    Article  CAS  Google Scholar 

  • Len SV, Hung YC, Chung D et al (2002) Effects of storage conditions and pH on chlorine loss in electrolyzed oxidizing (EO) water. J Agr Food Chem 50(1):209–212

    Article  CAS  Google Scholar 

  • Li XW, Sun SH, Li T (1996) Preliminary study of microbiocide effect and its mechanism of electrolyzed oxidizing water. Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue zazhi 17(2):95

    Google Scholar 

  • Li J, Ding T, Liao X et al (2017) Synergetic effects of ultrasound and slightly acidic electrolyzed water against Staphylococcus aureus evaluated by flow cytometry and electron microscopy. Ultrason Sonochem 38:711–719

    Article  CAS  PubMed  Google Scholar 

  • Liao LB, Chen WM, Xiao XM (2007) The generation and inactivation mechanism of oxidation-reduction potential of electrolyzed oxidizing water. J Food Eng 78(4):1326–1332

    Article  CAS  Google Scholar 

  • Liao X, Liu D, Xiang Q et al (2017a) Inactivation mechanisms of non-thermal plasma on microbes: a review. Food Control 75:83–91

    Article  CAS  Google Scholar 

  • Liao X, Xuan X, Li J et al (2017b) Bactericidal action of slightly acidic electrolyzed water against Escherichia coli and Staphylococcus aureus via multiple cell targets. Food Control 79:380–385

    Article  CAS  Google Scholar 

  • Mackey BM (2000) Injured bacteria In the microbiological safety and quality of foods, vol I (ed Lund BM, Baird-Parker TC, Gould GW) Aspen Publishers, Inc., Gaithersburg, pp 315–341

    Google Scholar 

  • Manas P, Pagán R (2005) Microbial inactivation by new technologies of food preservation. J Appl Microbiol 98(6):1387–1399

    Article  CAS  PubMed  Google Scholar 

  • Meireles A, Ferreira C, Melo L et al (2017) Comparative stability and efficacy of selected chlorine-based biocides against Escherichia coli in planktonic and biofilm states. Food Res Int 102:511–518

    Article  CAS  PubMed  Google Scholar 

  • Okull DO, Demirci A, Rosenberger D et al (2006) Susceptibility of Penicillium expansum spores to sodium hypochlorite, electrolyzed oxidizing water, and chlorine dioxide solutions modified with nonionic surfactants. J Food Prot 69(8):1944–1948

    Article  CAS  PubMed  Google Scholar 

  • Ovissipour M, Al-Qadiri HM, Sablani SS et al (2016) Efficacy of acidic and alkaline electrolyzed water for inactivating Escherichia coli O104:H4, Listeria monocytogenes, Campylobacter jejuni, Aeromonas hydrophila, and Vibrio parahaemolyticus in cell suspensions. Food Control 62:405

    Article  Google Scholar 

  • Ozaki M, Ohshima T, Mukumoto M et al (2012) A study for biofilm removing and antimicrobial effects by microbubbled tap water and other functional water, electrolyzed hypochlorite water and ozonated water. Dent Mater J 31(4):662–668

    Article  PubMed  Google Scholar 

  • Pangloli P, Hung Y (2011) Efficacy of slightly acidic electrolyzed water in killing or reducing Escherichia coli O157:H7 on iceberg lettuce and tomatoes under simulated food service operation conditions. J Food Sci 76(6):M361–M366

    Article  CAS  PubMed  Google Scholar 

  • Pangloli P, Hung Y (2013) Effects of water hardness and pH on efficacy of chlorine-based sanitizers for inactivating Escherichia coli O157:H7 and Listeria monocytogenes. Food Control 32(2):626–631

    Article  CAS  Google Scholar 

  • Park H, Hung YC, Chung D (2004) Effects of chlorine and pH on efficacy of electrolyzed water for inactivating Escherichia coli O157:H7 and Listeria monocytogenes. Int J Food Microbiol 91(1):13–18

    Article  CAS  PubMed  Google Scholar 

  • Park EJ, Alexander E, Taylor GA et al (2008a) Effects of organic matter on acidic electrolyzed water for reduction of foodborne pathogens on lettuce and spinach. J Appl Microbiol 105(6):1802–1809

    Article  PubMed  Google Scholar 

  • Park EJ, Alexander E, Taylor GA et al (2008b) Effect of electrolyzed water for reduction of foodborne pathogens on lettuce and spinach. J Food Sci 73(6):M268–M272

    Article  CAS  PubMed  Google Scholar 

  • Park EJ, Alexander E, Taylor GA et al (2009a) The decontaminative effects of acidic electrolyzed water for Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes on green onions and tomatoes with differing organic demands. Food Microbiol 26(4):386–390

    Article  CAS  PubMed  Google Scholar 

  • Park YB, Guo JY, Rahman SME et al (2009b) Synergistic effect of electrolyzed water and citric acid against Bacillus cereus cells and spores on cereal grains. J Food Sci 74(4):M185–M189

    Article  CAS  PubMed  Google Scholar 

  • Quan Y, Choi K, Chung D et al (2010) Evaluation of bactericidal activity of weakly acidic electrolyzed water (WAEW) against Vibrio vulnificus and Vibrio parahaemolyticus. Int J Food Microbiol 136(3):255–260

    Article  CAS  PubMed  Google Scholar 

  • Rahman SME, Ding T, Oh D (2010a) Effectiveness of low concentration electrolyzed water to inactivate foodborne pathogens under different environmental conditions. Int J Food Microbiol 139(3):147–153

    Article  CAS  PubMed  Google Scholar 

  • Rahman SME, Ding T, Oh D (2010b) Inactivation effect of newly developed low concentration electrolyzed water and other sanitizers against microorganisms on spinach. Food Control 21(10):1383–1387

    Article  CAS  Google Scholar 

  • Rahman SME, Jin Y, Oh D (2011) Combination treatment of alkaline electrolyzed water and citric acid with mild heat to ensure microbial safety, shelf-life and sensory quality of shredded carrots. Food Microbiol 28(3):484–491

    Article  CAS  PubMed  Google Scholar 

  • Rahman SME, Khan I, Oh D (2016) Electrolyzed water as a novel sanitizer in the food industry: current trends and future perspectives. Compr Rev Food Sci F 15(3):471–490

    Article  Google Scholar 

  • Setlow P (2006) Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 101(3):514–525

    Article  CAS  PubMed  Google Scholar 

  • Stevenson S, Cook SR, Bach SJ et al (2004) Effects of water source, dilution, storage, and bacterial and fecal loads on the efficacy of electrolyzed oxidizing water for the control of Escherichia coli O157:H7. J Food Protect 67(7):1377–1383

    Article  CAS  Google Scholar 

  • Sun JL, Zhang SK, Chen JY et al (2012) Efficacy of acidic and basic electrolyzed water in eradicating Staphylococcus aureus biofilm. Can J Microbiol 58(4):448–454

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Itakura J, Watanabe M et al (2002a) Inactivation of Staphylococcal enterotoxin-A with an electrolyzed anodic solution. J Agr Food Chem 50(1):230–234

    Article  CAS  Google Scholar 

  • Suzuki T, Noro T, Kawamura Y et al (2002b) Decontamination of aflatoxin-forming fungus and elimination of aflatoxin mutagenicity with electrolyzed NaCl anode solution. J Agr Food Chem 50(3):633–641

    Article  CAS  Google Scholar 

  • Tang W, Zeng X, Zhao Y et al (2011) Disinfection effect and its mechanism of electrolyzed oxidizing water on spores of Bacillus subtilis var niger. Food Sci Biotechnol 20(4):889

    Article  Google Scholar 

  • Tkhawkho L, Jackson K, Nitzan O et al (2017) Destruction of Clostridium difficile spores colitis using acidic electrolyzed water. Am J Infect Control 45(9):1053

    Article  PubMed  Google Scholar 

  • Torlak E (2014) Inactivation of Alicyclobacillus acidoterrestris spores in aqueous suspension and on apples by neutral electrolyzed water. Int J Food Microbiol 185:69–72

    Article  CAS  PubMed  Google Scholar 

  • Tu R, Ding C, Yin L et al (2015) Study on removal of ochratoxin a using slightly acidic electrolyzed water. J Chin Inst Food Sci Technol 15(11):128–134

    CAS  Google Scholar 

  • Vázquez-Sánchez D, Cabo ML, Rodríguez‐Herrera JJ (2014) Single and sequential application of electrolyzed water with benzalkonium chloride or peracetic acid for removal of staphylococcus aureus biofilms. J Food Safety 34(3):199–210

    Article  CAS  Google Scholar 

  • Venkitanarayanan KS, Ezeike GO, Hung YC et al (1999) Efficacy of electrolyzed oxidizing water for inactivating Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes. Appl Environ Microb 65(9):4276–4279

    CAS  Google Scholar 

  • Virto R, Manas P, Alvarez I et al (2005) Membrane damage and microbial inactivation by chlorine in the absence and presence of a chlorine-demanding substrate. Appl Environ Microb 71(9):5022–5028

    Article  CAS  Google Scholar 

  • Vorobjeva NV, Vorobjeva LI, Khodjaev EY (2004) The bactericidal effects of electrolyzed oxidizing water on bacterial strains involved in hospital infections. Artif Organs 28(6):590–592

    Article  PubMed  Google Scholar 

  • Wells-Bennik MH, Eijlander RT, Den Besten HM et al (2016) Bacterial spores in food: survival, emergence, and outgrowth. Annu Rev Food Sci Technol 7:457–482

    Article  CAS  PubMed  Google Scholar 

  • Wesche AM, Gurtler JB, Marks BP et al (2009) Stress, sublethal injury, resuscitation, and virulence of bacterial foodborne pathogens. J Food Protect 72(5):1121–1138

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Sun X, Pan Y et al (2012) Combining basic electrolyzed water pretreatment and mild heat greatly enhanced the efficacy of acidic electrolyzed water against Vibrio parahaemolyticus on shrimp. Food Control 23(2):320–324

    Article  CAS  Google Scholar 

  • Xiong K, Liu H, Liu R et al (2010) Differences in fungicidal efficiency against Aspergillus flavus for neutralized and acidic electrolyzed oxidizing waters. Int J Food Microbiol 137(1):67–75

    Article  CAS  PubMed  Google Scholar 

  • Xiong K, Liu HJ, Li LT (2012) Product identification and safety evaluation of aflatoxin B1 decontaminated by electrolyzed oxidizing water. J Agr Food Chem 60(38):9770–9778

    Article  CAS  Google Scholar 

  • Xuan XT, Ding T, Li J et al (2017) Estimation of growth parameters of Listeria monocytogenes after sublethal heat and slightly acidic electrolyzed water (SAEW) treatment. Food Control 71:17–25

    Article  CAS  Google Scholar 

  • Ye Z, Wang S, Chen T et al (2017) Inactivation mechanism of Escherichia coli induced by slightly acidic electrolyzed water. SCI REP-UK 7(1):6279

    Article  CAS  Google Scholar 

  • Ye Z, Wang S, Gao W et al (2018) Inactivation in Aeromonas hydrophila induced by slightly acidic electrolyzed water in freshwater. Trans ASABE 61(1):305–314

    Article  Google Scholar 

  • Zhang XN, Li WP, Xu XL et al (2016a) Effects of electrolyzed oxidizing water of different ph values on the biofilm of methicillin-resistant staphylococcus aureus in vitro. Chin J Clin Res 29:169–172

    Google Scholar 

  • Zhang C, Li B, Jadeja R, Fang J et al (2016b) Effects of bacterial concentrations and centrifugations on susceptibility of Bacillus subtilis vegetative cells and Escherichia coli O157:H7 to various electrolyzed oxidizing water treatments. Food Control 60:440–446

    Article  CAS  Google Scholar 

  • Zhang C, Li B, Jadeja R, Hung Y (2016c) Effects of electrolyzed oxidizing water on inactivation of Bacillus subtilis and Bacillus cereus spores in suspension and on carriers. J Food Sci 81(1):M144–M149

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Xia X, Li B et al (2018) Disinfection efficacy of electrolyzed oxidizing water on brown rice soaking and germination. Food Control 89:38–45

    Article  CAS  Google Scholar 

  • Zhao X, Zhong J, Wei C et al (2017) Current perspectives on viable but non-culturable state in foodborne pathogens. Front Microbiol 8:580

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd. and Zhejiang University Press, Hangzhou

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ding, T., Liao, X. (2019). Decontamination Efficacy and Principles of Electrolyzed Water. In: Ding, T., Oh, DH., Liu, D. (eds) Electrolyzed Water in Food: Fundamentals and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-3807-6_2

Download citation

Publish with us

Policies and ethics