Skip to main content

Mechanical Aspects and Applications of Pellets Prepared from Biomass Resources

  • Chapter
  • First Online:
Production of Materials from Sustainable Biomass Resources

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 9))

  • 1104 Accesses

Abstract

Currently, fossil fuels such as coal, natural gas and oil, represent the main energy sources in the world for providing heat. Environmental damage, due to the use of fossil fuels, such as global warming, acid rain and smog, push the world to reduce carbon emissions and to promote the development of renewable energy resources. On one hand biomass is a valid renewable alternative and a carbon neutral raw material for the production of clean energy, especially heat; on the other hand biomass, used as-is, is a leading cause of early deaths in developing countries. Pelletization, which can be coupled also to thermal treatment (e.g. carbonization) of biomass, increase its energy content (per unit of weight) and leads to clean burning. The pellet fuel market is in continuous growth, so that different materials have to be used to satisfy the demand (such as: herbaceous crops, straw, olive husk etc.). The technical parameters used for pelletization appear fundamental to adapt the process to the different characteristics of the raw material. This chapter deals with the pelletization process through the analysis of raw materials, binders, and pre-treatment processes. Pelletization process parameters are also considered together with the basics of pelletization modeling both for flat die machines and ring die machines. A model is applied to the pelletization of biochar, that allows the comparison with spruce fir wood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term “extractives”, according to [11] refers to: “The material in a biomass sample that is soluble in either water or ethanol during exhaustive extraction . Extractives include non-structural components of biomass samples that could potentially interfere with the down stream analysis of the biomass sample”.

References

  1. Saidur R, Abdelaziz EA, Demirbas A, Hossain MS, Mekhilef S (2011) A review on biomass as a fuel for boilers. Renew Sust Energ Rev 15(5):2262–2289

    Article  CAS  Google Scholar 

  2. Kambo HS, Dutta A (2015) Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production of solid biofuel. Energy Convers Manag 105:746–755

    Article  CAS  Google Scholar 

  3. Nunes LJR, Matias JCO, Catalão JPS (2014) A review on torrefied biomass pellets as a sustainable alternative to coal in power generation. Renew Sust Energ Rev 40:153–160

    Article  CAS  Google Scholar 

  4. Tarasov D, Shahi C, Leitch M (2013) Effect of additives on wood pellet physical and thermal characteristics: a review. ISRN For 2013:1–6

    Google Scholar 

  5. Tumuluru J, Wright C, Kenny K, Hess R, (2010) A review on biomass densification technologies for energy application. 1–59

    Google Scholar 

  6. Kaliyan N, Morey RV (2009) Factors affecting strength and durability of densified biomass products. Biomass Bioenergy 33(3):337–359

    Article  CAS  Google Scholar 

  7. Whittaker C, Shield I (2017) Factors affecting wood, energy grass and straw pellet durability – a review. Renew Sust Energ Rev 71:1–11

    Article  Google Scholar 

  8. Mola-Yudego B, Selkimäki M, González-Olabarria JR (2014) Spatial analysis of the wood pellet production for energy in Europe. Renew Energy 63:76–83

    Article  Google Scholar 

  9. IEA BIoenergy Global wood pellet industry and trade study 2017. http://task40.ieabioenergy.com/wp-content/uploads/2013/09/IEA-Wood-Pellet-Study_final-july-2017.pdf

  10. Castellano JM, Gómez M, Fernández M, Esteban LS, Carrasco JE (2015) Study on the effects of raw materials composition and pelletization conditions on the quality and properties of pellets obtained from different woody and non woody biomasses. Fuel 139:629–636

    Article  CAS  Google Scholar 

  11. Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Determination of extractives in biomass. Technical Report NREL/TP-510-42619

    Google Scholar 

  12. Duca D, Riva G, Foppa Pedretti E, Toscano G (2014) Wood pellet quality with respect to en 14961-2 standard and certifications. Fuel 135:9–14

    Article  CAS  Google Scholar 

  13. Huang Y, Finell M, Larsson S, Wang X, Zhang J, Wei R, Liu L (2017) Biofuel pellets made at low moisture content – influence of water in the binding mechanism of densified biomass. Biomass Bioenergy 98:8–14

    Article  CAS  Google Scholar 

  14. Obernberger I, Thek G (2010) The pellet handbook: the production and thermal utilisation of biomass pellets. Routledge

    Google Scholar 

  15. Hu Q, Yang H, Yao D, Zhu D, Wang X, Shao J, Chen H (2016) The densification of bio-char: effect of pyrolysis temperature on the qualities of pellets. Bioresour Technol 200:521–527

    Article  CAS  PubMed  Google Scholar 

  16. Biedermann F, Brunner T, Mandl C, Obernberger I, Kanzian W, Feldmeier S, Schwabl M, Hartmann H, Turowski P, Rist E, Schön C (2014) Production of solid sustainable energy carriers from biomass by means of torrefaction: deliverable no. D7.3 and D7.4 – executive summary. European Commission, Grant no. 282826

    Google Scholar 

  17. Cha JS, Park SH, Jung SC, Ryu C, Jeon JK, Shin MC, Park YK (2016) Production and utilization of biochar: a review. J Ind Eng Chem 40:1–15

    Article  CAS  Google Scholar 

  18. Faborode MO (1989) Moisture effects in the compaction of fibrous agricultural residues. Biol Wastes 28:61–71

    Article  Google Scholar 

  19. Monedero E, Portero H, Lapuerta M (2015) Pellet blends of poplar and pine sawdust: effects of material composition, additive, moisture content and compression die on pellet quality. Fuel Process Technol 132:15–23

    Article  CAS  Google Scholar 

  20. Filbakk T, Jirjis R, Nurmi J, Høibø O (2011) The effect of bark content on quality parameters of Scots pine (Pinus sylvestris L.) pellets. Biomass Bioenergy 35(8):3342–3349

    Article  CAS  Google Scholar 

  21. Serrano C, Monedero E, Lapuerta M, Portero H (2011) Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Process Technol 92(3):699–706

    Article  CAS  Google Scholar 

  22. Li Y, Liu H (2000) High pressure densification of wood residues to form an upgraded. Fuel 19:177–186

    CAS  Google Scholar 

  23. Toscano G, Riva G, Foppa Pedretti E, Corinaldesi F, Mengarelli C, Duca D (2013) Investigation on wood pellet quality and relationship between ash content and the most important chemical elements. Biomass Bioenergy 56(0):317–322

    Article  CAS  Google Scholar 

  24. Barbanera M, Lascaro E, Stanzione V, Esposito A, Altieri R, Bufacchi M (2016) Characterization of pellets from mixing olive pomace and olive tree pruning. Renew Energy 88:185–191

    Article  CAS  Google Scholar 

  25. Nielsen NPK, Gardner D, Poulsen T, Felby C (2009) Importance of temperature, moisture content, and species for the conversion process of wood residues into fuel pellets. Wood Fiber Sci 41(4):414–425

    CAS  Google Scholar 

  26. Stelte W, Holm JK, Sanadi AR, Barsberg S, Ahrenfeldt J, Henriksen UB (2011) A study of bonding and failure mechanisms in fuel pellets from different biomass resources. Biomass Bioenergy 35(2):910–918

    Article  CAS  Google Scholar 

  27. Carone MT, Pantaleo A, Pellerano A (2011) Influence of process parameters and biomass characteristics on the durability of pellets from the pruning residues of Olea europaea L. Biomass Bioenergy 35(1):402–410

    Article  Google Scholar 

  28. Garcia-Maraver A, Rodriguez ML, Serrano-Bernardo F, Diaz LF, Zamorano M (2015) Factors affecting the quality of pellets made from residual biomass of olive trees. Fuel Process Technol 129:1–7

    Article  CAS  Google Scholar 

  29. Arshadi M, Gref R, Geladi P, Dahlqvist SA, Lestander T (2008) The influence of raw material characteristics on the industrial pelletizing process and pellet quality. Fuel Process Technol 89(12):1442–1447

    Article  CAS  Google Scholar 

  30. Lestander TA, Finell M, Samuelsson R, Arshadi M, Thyrel M (2012) Industrial scale biofuel pellet production from blends of unbarked softwood and hardwood stems-the effects of raw material composition and moisture content on pellet quality. Fuel Process Technol 95:73–77

    Article  CAS  Google Scholar 

  31. Sultana A, Kumar A (2011) Development of energy and emission parameters for densified form of lignocellulosic biomass. Energy 36(5):2716–2732

    Article  CAS  Google Scholar 

  32. Mani S, Tabil LG, Sokhansanj S (2004) Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass Bioenergy 27(4):339–352

    Article  Google Scholar 

  33. Moon Jungwoo YHY, Bon-Cheol K, Jong-Woong A, Young-Lok C, Young-Mi Y, Gyeong-Dan Y, Gi Hong A, Kwang-Geun P, In-Hu C (2014) Analysis of factors affecting miscanthus pellet production and pellet quality using response surface methodology. Bioresources 9(2):3334–3346

    Google Scholar 

  34. Novaes E, Kirst M, Chiang V, Winter-Sederoff H, Sederoff R (2010) Lignin and biomass: a negative correlation for wood formation and lignin content in trees. Plant Physiol 154:555–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Demirbaş A (2001) Relationships between lignin contents and heating values of biomass. Energy Convers Manag 42(2):183–188

    Article  Google Scholar 

  36. Kuokkanen M, Vilppo T, Kuokkanen T, Stoor T, Niinimäki J (2011) Additives in wood pellet production – a pilot-scale study of binding agent usage. Bioresources 6(4):4331–4355

    CAS  Google Scholar 

  37. Lerma-Arce V, Oliver-Villanueva JV, Segura-Orenga G (2017) Influence of raw material composition of Mediterranean pinewood on pellet quality. Biomass Bioenergy 99:90–96

    Article  CAS  Google Scholar 

  38. Lehtikangas P (2001) Quality properties of pelletised sawdust, logging residues and bark. Biomass Bioenergy 20(5):351–360

    Article  Google Scholar 

  39. Mediavilla I, Esteban LS, Fernández MJ (2012) Optimisation of pelletisation conditions for poplar energy crop. Fuel Process Technol 104:7–15

    Article  CAS  Google Scholar 

  40. Kofman PD The prodution of wood pellet, COFORD, Processing/ Products n.10. http://www.coford.ie/media/coford/content/publications/projectreports/cofordconnects/ccnpellet_production.pdf

  41. Stáhl M, Berghel J, Frodeson S, Granström K, Reström R (2012) Effects on pellet properties and energy use when starch is added in the wood-fuel pelletizing process. Energy Fuel 26(3):1937–1945

    Article  CAS  Google Scholar 

  42. Ahn BJ, Chang HS, Lee SM, Choi DH, Cho ST, Han GS, Yang I (2014) Effect of binders on the durability of wood pellets fabricated from Larix kaemferi C. and Liriodendron tulipifera L. sawdust. Renew Energy 62:18–23

    Article  Google Scholar 

  43. BIOMASA Association (2011) The effect of additives for production costs and parameters of wood pellets. BIOMASA Association, Kysucky Lieskovec, Slovak Republic

    Google Scholar 

  44. Lehmann B, Schröder HW, Wollenberg R, Repke JU (2012) Effect of miscanthus addition and different grinding processes on the quality of wood pellets. Biomass Bioenergy 44:150–159

    Article  CAS  Google Scholar 

  45. Shang L, Nielsen NPK, Stelte W, Dahl J, Ahrenfeldt J, Holm JK, Puig Arnavat M, Bach LS, Henriksen UB (2014) Lab and bench-scale pelletization of torrefied wood chips—process optimization and pellet quality. Bioenergy Res 7:87–94

    Article  Google Scholar 

  46. Si Y, Hu J, Wang X, Yang H, Chen Y, Shao J, Chen H (2016) Effect of carboxymethyl cellulose binder on the quality of biomass pellets. Energy Fuel 30(7):5799–5808

    Article  CAS  Google Scholar 

  47. Chung FH (1991) Unified theory and guidelines on adhesion. J Appl Polym Sci 42(5):1319–1331

    Article  CAS  Google Scholar 

  48. Kaliyan N, Morey RV (2010) Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresour Technol 101(3):1082–1090

    Article  CAS  PubMed  Google Scholar 

  49. Pietsch W (2002) Agglomeration processes – phenomena, technologies, equipment. Wiley-VCH, Weinheim

    Google Scholar 

  50. Back EL (1987) The bonding mechanism in hardboard manufacture. Holzforschung 41(4):247–258

    Article  CAS  Google Scholar 

  51. Stelte W, Clemons C, Holm JK, Sanadi AR, Ahrenfeldt J, Shang L, Henriksen UB (2011) Pelletizing properties of torrefied spruce. Biomass Bioenergy 35(11):4690–4698

    Article  CAS  Google Scholar 

  52. Mitchell P, Kiel J, Livingston B, Dupont-Roc G (2007) Torrefied biomass: a foresighting study into the business case of pellets from torrefied biomass as a new solid fuel. Presented at ALL Energy 2007 Conference, Aberdeen Scotland May 24, 2007

    Google Scholar 

  53. Gilbert P, Ryu C, Sharifi V, Swithenbank J (2009) Effect of process parameters on pelletisation of herbaceous crops. Fuel 88(8):1491–1497

    Article  CAS  Google Scholar 

  54. Uslu A, Faaij APC, Bergman PCA (2008) Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation. Energy 33(8):1206–1223

    Article  Google Scholar 

  55. Karaosmanoğlu F, Tetik E, Gӧllü E (1999) Biofuel production using slow pyrolysis of the straw and stalk of the rapeseed plant. Fuel Process Technol 59(1):1–12

    Article  Google Scholar 

  56. Nielsen NPK, Gardner DJ, Felby C (2010) Effect of extractives and storage on the pelletizing process of sawdust. Fuel 89(1):94–98

    Article  CAS  Google Scholar 

  57. van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ (2011) Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy 35(9):3748–3762

    Google Scholar 

  58. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20(3):848–889

    Article  CAS  Google Scholar 

  59. Laird DA, Brown RC, Amonette JE, Lehmann J (2009) Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioprod Biorefin 3:547–562

    Article  CAS  Google Scholar 

  60. Onay O (2007) Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor. Fuel Process Technol 88(5):523–531

    Article  CAS  Google Scholar 

  61. Pimchuai A, Dutta A, Basu P (2010) Torrefaction of agriculture residue to enhance combustible properties. Energy Fuel 24(9):4638–4645

    Article  CAS  Google Scholar 

  62. Jaya ST, Shahab S, Richard HJ, Wright Christopher T, Boardman Richard D (2011) Ind Biotechnol 7(5):384–401

    Article  CAS  Google Scholar 

  63. Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, Titirici MM, Fühner C, Bens O, Kern J, Emmerich KH (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2:71–106

    Article  CAS  Google Scholar 

  64. Yan W, Hastings JT, Acharjee TC, Coronella CJ, Vásquez VR (2010) Mass and energy balances of wet torrefaction of lignocellulosic biomass. Energy Fuel 24:4738–4742

    Article  CAS  Google Scholar 

  65. Yan W, Acharjee TC, Coronella CJ, Vásquez VR (2009) Thermal pretreatment of lignocellulosic biomass. Environ Prog Sustain Energy 28:435–440

    Article  CAS  Google Scholar 

  66. Demirbaş A (2005) Estimating of structural composition of wood and non-wood biomass samples. Energy Sources 27:761–767

    Article  CAS  Google Scholar 

  67. Acharjee TC, Coronella CJ, Vasquez VR (2011) Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass. Bioresour Technol 102:4849–4854

    Article  CAS  PubMed  Google Scholar 

  68. Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sust Energ Rev 45:359–378

    Article  CAS  Google Scholar 

  69. Hu Q, Shao J, Yang H, Yao D, Wang X, Chen H (2015) Effects of binders on the properties of bio-char pellets. Appl Energy 157:508–516

    Article  CAS  Google Scholar 

  70. Peng J, Bi XT, Lim CJ, Peng H, Kim CS, Jia D, Zuo H (2015) Sawdust as an effective binder for making torrefied pellets. Appl Energy 157:491–498

    Article  Google Scholar 

  71. Peng JH, Bi XT, Lim CJ, Sokhansanj S (2013) Study on density, hardness, and moisture up take of torrefied wood pellets. Energy Fuel 27(2):967–974

    Article  CAS  Google Scholar 

  72. Chen WH, Peng J, Bi XT (2015) A state-of-the-art review of biomass torrefaction, densification and applications. Renew Sust Energ Rev 44:847–866

    Article  CAS  Google Scholar 

  73. Peng JH, Bi XT, Sokhansanj S, Lim CJ (2013) Torrefaction and densification of different species of softwood residues. Fuel 111:411–421

    Article  CAS  Google Scholar 

  74. Kambo HS, Dutta A (2014) Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization. Appl Energy 135:182–191

    Article  CAS  Google Scholar 

  75. Biswas AK, Yang W, Blasiak W (2011) Steam pretreatment of Salix to upgrade biomass fuel for wood pellet production. Fuel Process Technol 92(9):1711–1717

    Article  CAS  Google Scholar 

  76. Lam PS, Sokhansanj S, Bi X, Lim CJ, Melin S (2011) Energy input and quality of pellets made from steam-exploded Douglas Fir (Pseudotsuga menziesii). Energy Fuel 25(4):1521–1528

    Article  CAS  Google Scholar 

  77. Lam PS (2011) Steam explosion of biomass to produce durable wood pellets, PhD thesis submitted at the University of British Columbia, Vancouver, Canada

    Google Scholar 

  78. Tumuluru JS (2014) Effect of process variables on the density and durability of the pellets made from high moisture corn stover. Biosyst Eng 119:44–57

    Article  Google Scholar 

  79. Mani S, Tabil LG, Sokhansanj S (2003) An overview of compaction of biomass grinds. Powder Handl Process 15(3):160–168

    CAS  Google Scholar 

  80. Stelte W, Holm JK, Sanadi AR, Barsberg S, Ahrenfeldt J, Henriksen UB (2011) Fuel pellets from biomass: the importance of the pelletizing pressure and its dependency on the processing conditions. Fuel 90(11):3285–3290

    Article  CAS  Google Scholar 

  81. Nielsen NPK, Holm JK, Felby C (2009) Effect of fiber orientation on compression and frictional properties of sawdust particles in fuel pellet production. Energy Fuel 23:3211–3216

    Article  CAS  Google Scholar 

  82. Finell M, Arshadi M, Gref R, Scherzer T, Knolle W, Lestander T (2009) Laboratory-scale production of biofuel pellets from electron beam treated Scots pine (Pinus silvestris L.) sawdust. Radiat Phys Chem 78:281–287

    Article  CAS  Google Scholar 

  83. Chow SZ, Pickles KJ (1971) Thermal softening and degradation of wood and bark. Wood Fiber Sci 3:166–178

    CAS  Google Scholar 

  84. Goring DAI (1971) Thermal softening of lignin, hemicellulose and cellulose. Pulp Paper Mag Can 64:512–527

    Google Scholar 

  85. Holm JK, Henriksen UB, Hustad JE, Sørensen LH (2006) Toward an understanding of controlling parameters in softwood and hardwood pellets production. Energy Fuel 20:2686–2694

    Article  CAS  Google Scholar 

  86. Holm JK, Henriksen UB, Wand K, Hustad JE, Posselt D (2007) Experimental verification of novel pellet model using a single pelleter unit. Energy Fuel 21:2446–2449

    Article  CAS  Google Scholar 

  87. Xia X, Sun Y, Wu K, Jiang Q (2014) Modeling of a straw ring-die briquetting process. BioResources 9(4):6316–6328

    Article  CAS  Google Scholar 

  88. Chłopek M, Dzik T, Hryniewicz M (2012) The method for selection of the working system components for a pellet press with flat die. Chemik 66(5):493–500

    Google Scholar 

  89. Wu K, Sun Y (2013) Ring-die pellet forming technology and equipment. Science Press, Beijing

    Google Scholar 

  90. Skalweit H (1938) Krafte und beanspruchungen in strohpressen (Forces and stresses in straw balers). In: Konstruckteurkursus. RKTL-Schriften 88:30–35

    Google Scholar 

  91. Faborode MO, O’Callaghan JR (1986) Theoretical analysis of the compression of fibrous agricultural materials. J Agric Eng Res. (1986) 35:175–191

    Article  Google Scholar 

  92. Panelli R, Filho FA (2001) A study of a new phenomenological compacting equation. Powder Technol 114(1):255–261

    Article  CAS  Google Scholar 

  93. Hu JJ (2008) Straw pellet fuel cold molding by compression: experimental study and numerical simulation. Ph.D dissertation, Dalian University of Technology, Dalian, China

    Google Scholar 

  94. Nielsen SK (2016) Numerical modeling of the wood pelleting process. Master thesis, http://projekter.aau.dk/projekter/files/239512717/P10_finalstate.pdf

  95. U.S. Department of Agriculture Forest Service (1999) Wood handbook – wood as an engineering material. Forest Products Laboratory

    Google Scholar 

  96. De Assis MR (2017) Mechanical and physical properties of eucalyptus charcoal from pyrolisis under different conditions. PhD thesis, Universidade Federal de Lavras

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank eng. Michele Oligarchi and eng. Micro Cesca for the help during pelletizing tests and simulation running. The authors acknowledge the financial support by the Research Council of Norway and a number of industrial partners through the project BioCarb+ (“Enabling the biocarbon value chain for energy”). The authors would like to acknowledge the help of dr. Tomasz Dzik and prof. Marek Hryniewicz from AGH University of Science and Technology, Cracow, Poland. The authors would like to acknowledge the help of dr. Yu Sun from Nanjing University of Science and Technology, China. The authors would like to acknowledge the help of professor Mathias Mandø from Department of energy Aalborg University, Denmark and dr. Andreas Brinch Rosenørn and dr. Simon Klinge Nielsen from Andritz Feed and Biofuel. The authors would like to acknowledge the help of eng. Lorenzo Riva from University of Agder, Norway. The authors want also to acknowledge the help of reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Bartocci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bartocci, P. et al. (2019). Mechanical Aspects and Applications of Pellets Prepared from Biomass Resources. In: Fang, Z., Smith, Jr, R., Tian, XF. (eds) Production of Materials from Sustainable Biomass Resources . Biofuels and Biorefineries, vol 9. Springer, Singapore. https://doi.org/10.1007/978-981-13-3768-0_11

Download citation

Publish with us

Policies and ethics