Skip to main content

Energy-Efficient SRAM Cell Design with Body Biasing

  • Conference paper
  • First Online:
Innovations in Electronics and Communication Engineering

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 65))

  • 755 Accesses

Abstract

This paper presents the need of high-speed SRAM memory operation for minimum supply voltage. The reduction of power dissipation in memories is becoming primary importance in subthreshold region. There are several power reduction techniques which can be applied to SRAM memory cell to design low-power and energy-efficient memory. SRAM cell is designed with body biasing technique and used in the memory array to improve performance. The 32 × 32 SRAM memory array is implemented using cadence 45 nm technology. Simulation and analysis results are compared with conventional array for better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mostafa H, Anis M, Elmasry M (2011) Adaptive body bias for reducing the impacts of NBTI and process variations on 6T SRAM cells. IEEE Trans Circuits Syst I 58:2859–2871

    Article  MathSciNet  Google Scholar 

  2. Chen G, Sylvester D, Blaauw D, Mudge T (2010) Yield-driven near-threshold SRAM design. IEEE Trans Very Large Scale Integr (VLSI) Syst 18(11):1590

    Article  Google Scholar 

  3. Kauppila AV, Bhuva BL, Kauppila JS, Massengill LW, Holman WT (2011) Impact of process variations on SRAM single event upsets. IEEE Trans Nucl Sci 58(3):834

    Article  Google Scholar 

  4. Kim TT-H, Ba NL (2014) Design of a temperature-aware low-voltage SRAM with self-adjustable sensing margin enhancement for high-temperature applications up to 300 °C. IEEE J Solid-State Circuits 49(11):2534

    Article  Google Scholar 

  5. Suthar R, Pande KS, Murty NS (2017) Leakage reduction in DT8T SRAM cell using body biasing technique. In: IEEE international symposium on nanoelectronic and information systems, pp 1–5

    Google Scholar 

  6. Shakir T, Sachdev M (2014) A body-bias based current sense amplifier for high-speed low-power embedded SRAMS, pp 444–448

    Google Scholar 

  7. Hokimoto S, Ishihara T, Onodera H (2016) Minimum energy point tracking using combined dynamic voltage scaling and adaptive body biasing, pp 1–6

    Google Scholar 

  8. Zheng N, Mazumder P (2017) Modeling and mitigation of static noise margin variation is subthreshold SRAM cells. IEEE Trans Circuits Syst I 64:2726–2736

    Article  Google Scholar 

  9. Khayatzadeh M, Lian Y (2013) Average-8T differential-sensing subthreshold SRAM with bit interleaving and 1 k bits per bitline. IEEE Trans Very Large Scale Integr (VLSI) Syst, 1–12

    Google Scholar 

  10. Jiang C, Zhang D, Zhang S, Wang H, Zhuang Z (2017) A yield-driven near-threshold 8-T negative bit-line scheme, pp 315–318

    Google Scholar 

  11. Kim TT, Le Ba N (2013) A low voltage 8-T SRAM with PVT-tracking bitline sensing margin enhancement for high operating temperature (up to 300 °C), pp 233–236

    Google Scholar 

  12. Calimera A, Macii A, Macii E, Poncino M (2012) Design techniques and architectures for low-leakage SRAMS. IEEE Trans Circuits Syst I 59:1992–2007

    Article  MathSciNet  Google Scholar 

  13. Gupta SK, Raychowdhury A, Roy K (2010) Digital computation in subthreshold region for ultralow-power operation: a device–circuit–architecture codesign perspective. IEEE 98(2):160

    Article  Google Scholar 

  14. Sharma CK, Chandel R (2014) Analysis of SRAM cell designs for low power applications. In: International conference for convergence of technology, p 1

    Google Scholar 

  15. Indumathi G, Aarthi alias Ananthakirupa VPMB (2014) Energy optimization techniques on SRAM: a survey. In: 2014 international conference on communication and network technologies (ICCNT), p 216

    Google Scholar 

  16. Sharan S, Chandra A, Goel N, Kumar A (2016) Comparison of 6T-SRAM cell designs using DTMOS and VTMOS for low power applications. In: IEEE international conference on power electronics, intelligent control and energy systems (ICPEICES-2016), pp 1–5

    Google Scholar 

  17. Torrens G, Alorda B, Carmona C, Malagón-Periánez D, Segura J, Bota SA (2017) A 65-nm reliable 6T CMOS SRAM cell with minimum size transistors. IEEE Trans Emerg Top Comput 1–9

    Google Scholar 

  18. Toh SO, Guo Z, Liu T-JK, Nikolić B (2011) Characterization of dynamic SRAM stability in 45 nm CMOS. IEEE J Solid-State Circuits 46(11):2702

    Article  Google Scholar 

  19. Vashisht G, Pahuja H, Singh B, Panday S (2016) Design and comparative analysis of low power 64 bit SRAM and its peripherals using power reduction techniques

    Google Scholar 

  20. Kumar SS, Soni G (2015) Power, energy and SNM optimization of 6TSRAM cell using power gating technique. In: 2015 fifth international conference on communication systems and network technologies, p 889

    Google Scholar 

  21. Zheng N, Mazumder P (2017) Modeling and mitigation of static noise margin variation in subthreshold SRAM cells. IEEE Trans Circuits Syst I: Regul Pap 64(10):2726–2736

    Article  Google Scholar 

  22. Saeidi R, Sharifkhani M, Hajsadeghi K (2014) Statistical analysis of read static noise margin for near/sub-threshold SRAM cell. IEEE Trans Circuits Syst I: Regul Pap 61(12):3386

    Article  Google Scholar 

  23. Saeidi R, Sharifkhani M, Hajsadeghi K (2014) A subthreshold symmetric SRAM cell with high read stability. IEEE Trans Circuits Syst II: Express Briefs 61(1):26

    Article  Google Scholar 

  24. Ruchi Sudeb Dasgupta (2018) Compact analytical model to extract write static noise margin (WSNM) for SRAM cell at 45 nm and 65 nm nodes. IEEE Trans Semicond Manuf 31(1):1–8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kalyani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kalyani, P., Madhavi Latha, M., Chandra Sekhar, P. (2019). Energy-Efficient SRAM Cell Design with Body Biasing. In: Saini, H., Singh, R., Kumar, G., Rather, G., Santhi, K. (eds) Innovations in Electronics and Communication Engineering. Lecture Notes in Networks and Systems, vol 65. Springer, Singapore. https://doi.org/10.1007/978-981-13-3765-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3765-9_39

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3764-2

  • Online ISBN: 978-981-13-3765-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics