Skip to main content

Molecular Mechanisms of Osmotic Stress Recovery in Extremophile Plants: What Can We Learn from Proteomics?

  • Chapter
  • First Online:

Abstract

During their life cycle, plants are often exposed to phases of high salinity and dehydration stress. Extremophile plants have evolved mechanisms of stress tolerance allowing them to survive or recover from extremely adverse conditions such as water deficit stress and soil salinity. Plant adaptability environmental constraints are linked with deep modifications in proteomic profile, with relevance in abiotic tolerance. Research in extreme drought and high salinity tolerance in resurrection plants and halophytes, respectively, provided some insights into stress tolerance and stress recovery through dynamic changes in protein abundance. Identified proteins under drought and salinity conditions cover a wide range of biological functions: photosynthesis, energy metabolism, protein synthesis, protein folding and degradation and defence response. Proteins related to antioxidant metabolism and scavenging of oxygen radicals were found with higher abundance in halophytes and resurrection plants enabling them to cope with stressful conditions. Comprehensive data from recent proteomics studies confirming the relationship between stress tolerance and specific protein abundance are summarized in this paper.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abogadallah GM (2010) Insights into the significance of antioxidative defense under salt stress. Plant Signal Behav 5:369–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abreu IA, Farinha AP, Negrão S, Gonçalves N, Fonseca C, Rodrigues M, Batista R, Nelson JM, Saibo M, Oliveira MM (2013) Coping with abiotic stress: proteome changes for crop improvement. J Proteome 93:145–168

    Article  CAS  Google Scholar 

  • Aghaei K, Ehsanpour AA, Komatsu S (2008) Proteome analysis of potato under salt stress. J Proteome Res 7:4858–4868

    Article  CAS  PubMed  Google Scholar 

  • Alamillo JM, Bartels D (1996) Light and stage of development influence the expression of desiccation-induced genes in the resurrection plant Craterostigma plantagineum. Plant Cell Environ 19:300–310

    Article  CAS  Google Scholar 

  • Amzallag GN (1997) Influence of periodic fluctuation in root environment on adaptation to salinity in Sorghum bicolor. Funct Plant Biol 24:579–586

    Article  CAS  Google Scholar 

  • Ashraf MPJC, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Ashraf M, Athar HR, Harris PJC, Kwon TR (2008) Some prospective strategies for improving crop salt tolerance. Adv Agron 97:45–110

    Article  CAS  Google Scholar 

  • Askari H, Edqvist J, Hajheidari M, Kafi M, Salekdeh GH (2006) Effects of salinity levels on proteome of Suaeda aegyptiaca leaves. Proteomics 6:2542–2554

    Article  CAS  PubMed  Google Scholar 

  • Athar HR, Ashraf M (2009) Strategies for crop improvement against salinity and drought stress: an overview. In: Ashraf M, Öztürk M, Athar HR (eds) Salinity and water stress: improving crop efficiency. Springer, New York, pp 1–16

    Google Scholar 

  • Atteya AM (2003) Alteration of water relations and yield of corn genotypes in response to drought stress. Bulg J Plant Physiol 29:63–76

    Google Scholar 

  • Azri W, Barhoumi Z, Chibani F, Borji M, Bessrour M, Mliki A (2016) Proteomic responses in shoots of the facultative halophyte Aeluropus littoralis (Poaceae) under NaCl salt stress. Funct Plant Biol 43:1028–1047

    Article  CAS  PubMed  Google Scholar 

  • Baker J, Steele C, Dure L (1988) Sequence and characterization of 6 Lea proteins and their genes from cotton. Plant Mol Biol 11:277–291

    Article  CAS  PubMed  Google Scholar 

  • Barnabas B, Jagner K, Feher A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    CAS  PubMed  Google Scholar 

  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta Biomembr 1465(1–2):140–151

    Article  CAS  Google Scholar 

  • Bogeat-Triboulot MB, Brosché M, Renaut J, Jouve L, Le Thiec D, Fayyaz P, Vinocur B, Witters E, Laukens K, Teichmann T, Altman A, Hausman J-F, Polle A, Kangasjärvi J, Dreyer E (2007) Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiol 143:876–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Luo Q, Tian Y, Meng F (2017) Physiological and proteomic analyses of the drought stress response in Amygdalus Mira (Koehne) Yü et Lu roots. BMC Plant Biol 17(1)

    Google Scholar 

  • Chakrabortee S, Boschetti C, Walton LJ, Sarkar S, Rubinsztein DC, Tunnacliffe A (2007) Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function. Proc Natl Acad Sci 104:18073–18078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot-Lond 103:551–560

    Article  CAS  Google Scholar 

  • Chen D, Wang S, Cao B, Cao D, Leng G, Li H, Yin L, Shan L, Deng X (2016) Genotypic variation in growth and physiological response to drought stress and re-watering reveals the critical role of recovery in drought adaptation in maize seedlings. Front Plant Sci 6:1241

    PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Qi Y, Zhu Q, Chen X, Wang N, Zhao X, Chen H, Cui X, Xu L, Zhang W (2009) New changes in the plasma-membrane-associated proteome of rice roots under salt stress. Proteomics 9:3100–3114

    Article  CAS  PubMed  Google Scholar 

  • Cheng T, Chen J, Zhang J, Shi S, Zhou Y, Lu L, Wang P, Jiang Z, Yang J, Yang J, Zhang S, Shi J (2015) Physiological and proteomic analyses of leaves from the halophyte Tangut Nitraria reveals diverse response pathways critical for high salinity tolerance. Front Plant Sci 6:30

    PubMed  PubMed Central  Google Scholar 

  • Chitteti BR, Peng Z (2007) Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. J Proteome Res 6:1718–1727

    Article  CAS  PubMed  Google Scholar 

  • Cornic G (2000) Drought stress inhibits photosynthesis by decreasing stomatal aperture–not by affecting ATP synthesis. Trends Plant Sci 5:187–188

    Article  Google Scholar 

  • Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  CAS  PubMed  Google Scholar 

  • de Lacerda CF, Cambraia J, Oliva MA, Ruiz HA (2005) Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery. Environ Exp Bot 54:69–76

    Article  CAS  Google Scholar 

  • Debez A, Braun HP, Pich A, Taamalli W, Koyro HW, Abdelly C, Huchzermeyer B (2012) Proteomic and physiological responses of the halophyte Cakile maritima to moderate salinity at the germinative and vegetative stages. J Proteome 75:5667–5694

    Article  CAS  Google Scholar 

  • Degenhardt B, Gimmler H (2000) Cell wall adaptations to multiple environmental stresses in maize roots. J Exp Bot 51:595–603

    Article  CAS  PubMed  Google Scholar 

  • Denison FC, Paul AL, Zupanska AK, Ferl RJ (2011) 14-3-3 proteins in plant physiology. Semin Cell Dev Biol 22:720–727

    Article  CAS  PubMed  Google Scholar 

  • Dinakar C, Bartels D (2013) Desiccation tolerance in resurrection plants: new insights from transcriptome, proteome, and metabolome analysis. Front Plant Sci 4:482

    Article  PubMed  PubMed Central  Google Scholar 

  • Du CX, Fan HF, Guo SR, Tezuka T, Li J (2010) Proteomic analysis of cucumber seedling roots subjected to salt stress. Phytochemistry 71:1450–1459

    Article  CAS  PubMed  Google Scholar 

  • Epstein E, Rains DW (1987) Advances in salt tolerance. In: Genetic aspects of plant mineral nutrition. Springer, Dordrecht, pp 113–125

    Chapter  Google Scholar 

  • Fan P, Feng J, Jiang P, Chen X, Bao H, Nie L, Jiang D, Lv S, Kuang T, Li Y (2011) Coordination of carbon fixation and nitrogen metabolism in Salicornia europaea under salinity: comparative proteomic analysis on chloroplast proteins. Proteomics 11:4346–4367

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72:673–689

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Garcia N, Hernandez M, Casado-Vela J, Bru R, Elortza F, Hedden P, Olmos E (2011) Changes to the proteome and targeted metabolites of xylem sap in Brassica oleracea in response to salt stress. Plant Cell Environ 34:821–836

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  CAS  PubMed  Google Scholar 

  • Gallé A, Haldimann P, Feller U (2007) Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. New Phytol 174:799–810

    Article  PubMed  CAS  Google Scholar 

  • Ghosh D, Xu J (2014) Abiotic stress responses in plant roots: a proteomics perspective. Front Plant Sci 5:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goday A, Sánchez-Martínez D, Gómez J, Puigdomènech P, Pagès M (1988) Gene expression in developing Zea mays embryos: regulation by abscisic acid of a highly phosphorylated 23-to 25-kD group of proteins. Plant Physiol 88:564–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths CA, Gaff DF, Neale AD (2014) Drying without senescence in resurrection plants. Front Plant Sci 5:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Grzesiak MT, Grzesiak S, Skoczowski A (2006) Changes of leaf water potential and gas exchange during and after drought in triticale and maize genotypes differing in drought tolerance. Photosynthetica 44:561–568

    Article  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014. Article ID 701596

    Google Scholar 

  • Himabindu Y, Chakradhar T, Reddy MC, Kanygin A, Redding KE, Chandrasekhar T (2016) Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environ Exp Bot 124:39–63

    Article  CAS  Google Scholar 

  • Höfler K, Migsch H, Rottenburg W (1941) Über die Austrocknungresistenz landwirtschaftlicher Kulturpflanzen. Forschungsdienst 12:50–61

    Google Scholar 

  • Ingle R, Schmidt U, Farrant J, Thomson J, Mundree S (2007) Proteomic analysis of leaf proteins during dehydration of the resurrection plant Xerophyta viscosa. Plant Cell Environ 30:435–446

    Article  CAS  PubMed  Google Scholar 

  • Jiang G, Wang Z, Shang H, Yang W, Hu Z, Phillips J, Deng X (2007a) Proteome analysis of leaves from the resurrection plant Boea hygrometrica in response to dehydration and rehydration. Planta 225:1405

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Yang B, Harris NS, Deyholos MK (2007b) Comparative proteomic analysis of NaCl stress responsive proteins in Arabidopsis roots. J Exp Bot 58:3591–3607

    Article  CAS  PubMed  Google Scholar 

  • Kosová K, Vítámvás P, Prášil IT, Renaut J (2011) Plant proteome changes under abiotic stress–contribution of proteomics studies to understanding plant stress response. J Proteome 74:1301–1322

    Article  CAS  Google Scholar 

  • Kumari A, Das P, Parida AK, Agarwal PK (2015) Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front Plant Sci 6:537

    Article  PubMed  PubMed Central  Google Scholar 

  • Lafitte HR, Yongsheng G, Yan S, Li ZK (2007) Whole plant responses, key processes, and adaptation to drought stress: the case of rice. J Exp Bot 58:169–175

    Article  CAS  PubMed  Google Scholar 

  • Li XJ, Yang MF, Chen H, Qu LQ, Chen F, Shen SH (2010) Abscisic acid pretreatment enhances salt tolerance of rice seedlings: proteomic evidence. Biochim Biophysi Acta (BBA)-Proteins Proteomics 1804:929–940

    Article  CAS  Google Scholar 

  • Malakshah SN, Rezaei MH, Heidari M, Salekdeh GH (2007) Proteomics reveals new salt responsive proteins associated with rice plasma membrane. Biosci Biotechnol Biochem 71:2144–2154

    Article  CAS  Google Scholar 

  • Manaa A, Ben Ahmed H, Valot B, Bouchet JP, Aschi-Smiti S, Causse M, Faurobert M (2011) Salt and genotype impact on plant physiology and root proteome variations in tomato. J Exp Bot 62:2797–2813

    Article  CAS  PubMed  Google Scholar 

  • Michel D, Furini A, Salamini F, Bartels D (1994) Structure and regulation of an ABA- and desiccation-responsive gene from the resurrection plant Craterostigma plantagineum. Plant Mol Biol 24(4):549–560

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi PP, Moieni A, Hiraga S, Komatsu S (2012) Organ-specific proteomic analysis of drought-stressed soybean seedlings. J Proteome 75:1906–1923

    Article  CAS  Google Scholar 

  • Moradi P, Ford-Lloyd B, Pritchard J (2018) Metabolic responses of Thymus vulgaris to water deficit stress. Curr Metabolomics 6:64–74

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Ndima T, Farrant J, Thomson J, Mundree S (2001) Molecular characterization of XVT8, a stress-responsive gene from the resurrection plant Xerophyta viscosa Baker. Plant Growth Regul 35:137–145

    Article  CAS  Google Scholar 

  • Oliver MJ, Jain R, Balbuena TS, Agrawal G, Gasulla F, Thelen JJ (2011) Proteome analysis of leaves of the desiccation-tolerant grass, Sporobolus stapfianus, in response to dehydration. Phytochemistry 72:1273–1284

    Article  CAS  PubMed  Google Scholar 

  • Pang Q, Chen S, Dai S, Chen Y, Wang Y, Yan X (2010) Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J Proteome Res 9:2584–2599

    Article  CAS  PubMed  Google Scholar 

  • Pardossi A, Malorgio F, Oriolo D, Gucci R, Serra G, Tognoni F (1998) Water relations and osmotic adjustment in Apium graveolens during long-term NaCl stress and subsequent relief. Physiol Plant 102:369–376

    Article  CAS  Google Scholar 

  • Peng Z, Wang M, Li F, Lv H, Li C, Xia G (2009) A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Mol Cell Proteomics 8:2676–2686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrone I, Pagliarani C, Lovisolo C, Chitarra W, Roman F, Schubert A (2012) Recovery from water stress affects grape leaf petiole transcriptome. Planta 235:1383–1396

    Article  CAS  PubMed  Google Scholar 

  • Pitman MG, Lauchli A (2002) Global impact of salinity and agricultural ecosystems. In: Lauchli A, Luttge U (eds) Salinity: environmental, plants, molecules. Springer, Dordrecht, pp 3–20

    Google Scholar 

  • Polle A (2001) Dissecting the superoxide dismutase–ascorbate peroxidase–glutathione pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiol 126:445–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Y, Xi J, Du L, Poovaiah BW (2012) The function of calreticulin in plant immunity: new discoveries for an old protein. Plant Signal Behav 7:907–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehman S, Harris PJC, Ashraf M (2005) Stress environments and their impact on crop production. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. Haworth Press, New York, pp 3–18

    Google Scholar 

  • Roberts MR (2003) 14-3-3 proteins find new partners in plant cell signalling. Trends Plant Sci 8:218–223

    Article  CAS  PubMed  Google Scholar 

  • Rodziewicz P, Swarcewicz B, Chmielewska K, Wojakowska A, Stobiecki M (2014) Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiol Plant 36:1–19

    Article  CAS  Google Scholar 

  • Röhrig H, Schmidt J, Colby T, Bräutigam A, Hufnagel P, Bartels D (2006) Desiccation of the resurrection plant Craterostigma plantagineum induces dynamic changes in protein phosphorylation. Plant Cell Environ 29:1606–1617

    Article  PubMed  CAS  Google Scholar 

  • Sengupta S, Majumder AL (2009) Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach. Planta 229:911–929

    Article  CAS  PubMed  Google Scholar 

  • Shabala SN, Mackay AS (2011) Ion transport in halophytes. Adv Bot Res 57:151–187

    Article  CAS  Google Scholar 

  • Sobhanian H, Motamed N, Jazii FR, Nakamura T, Komatsu S (2010) Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae), a halophyte C4 plant. J Proteome Res 9:2882–2897

    Article  CAS  PubMed  Google Scholar 

  • Sobhanian H, Aghaei K, Komatsu S (2011) Changes in the plant proteome resulting from salt stress: toward the creation of salt-tolerant crops? J Proteome 74:1323–1337

    Article  CAS  Google Scholar 

  • Spreitzer RJ, Salvucci ME (2002) RUBISCO: structure, regulatory interactions and possibilities for a better enzyme. Annu Rev Plant Biol 53:449–475

    Article  CAS  PubMed  Google Scholar 

  • Tang M, Liu X, Deng H, Shen S (2011) Over-expression of JcDREB, a putative AP2/EREBP domain-containing transcription factor gene in woody biodiesel plant Jatropha curcas, enhances salt and freezing tolerance in transgenic Arabidopsis thaliana. Plant Sci 181:623–631

    Article  CAS  PubMed  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • Wang WX, Barak T, Vinocur B, Shoseyov O, Altman A (2003) Abiotic resistance and chaperones: possible physiological role of SP1, a stable and stabilizing protein from Populus. In: Plant biotechnology 2002 and beyond. Springer, Dordrecht, pp 439–443

    Chapter  Google Scholar 

  • Wang X, Fan P, Song H, Chen X, Li X, Li Y (2009) Comparative proteomic analysis of differentially expressed proteins in shoots of Salicornia europaea under different salinity. J Proteome Res 8:3331–3345

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chen S, Zhang H, Shi L, Cao F, Guo L, Xie Y, Wang T, Yan X, Dai S (2010) Desiccation tolerance mechanism in resurrection fern-ally Selaginella tamariscina revealed by physiological and proteomic analysis. J Proteome Res 9:6561–6577

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chang L, Wang B, Wang D, Li P, Wang L, Yi X, Huang Q, Peng M, Guo A (2013) Comparative proteomics of Thellungiella halophila leaves from plants subjected to salinity reveals the importance of chloroplastic starch and soluble sugars in halophyte salt tolerance. Mol Cell Proteomics 12:2174–2195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Meng Y, Li B, Ma X, Lai Y, Si E, Yang K, Xu X, Shang X, Wang H, Wang D (2015) Physiological and proteomic analyses of salt stress response in the halophyte Halogeton glomeratus. Plant Cell Environ 38:655–669

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yang P, Gao Q, Liu X, Kuang T, Shen S, He Y (2008a) Proteomic analysis of the response to high-salinity stress in Physcomitrella Patens. Planta 228:167–177

    Article  CAS  PubMed  Google Scholar 

  • Wang MC, Peng ZY, Li CL, Li F, Liu C, Xia GM (2008b) Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics 8:1470–1489

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Sibicky T, Huang B (2010) Protein profile analysis of salt-responsive proteins in leaves and roots in two cultivars of creeping bentgrass differing in salinity tolerance. Plant Cell Rep 29:595–615

    Article  CAS  PubMed  Google Scholar 

  • Xu GY, Rocha PSCF, Wang ML, Xu ML, Cui YC, Li LY, Zhu YX, Xia X (2011) A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta 234:47–59

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Ma C, Wang L, Chen S, Li H (2012) Salt stress induced proteome and transcriptome changes in sugar beet monosomic addition line M14. J Plant Physiol 169:839–850

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura K, Masuda A, Kuwano M, Yokota A, Akashi K (2008) Programmed proteome response for drought avoidance/tolerance in the root of a C3 xerophyte (wild watermelon) under water deficits. Plant Cell Physiol 49:226–241

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Chen S, Zhao Q, Wang T, Yang C, Diaz C, Sun G, Dai S (2011) Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. J Proteome Res 10:3852–3870

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Han B, Wang T, Chen SX, Li HY (2012) Mechanisms of plant salt response: insights from proteomics. J Proteome Res 11:49–67

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Fonslow BR, Shan B, Baek MC, Yates IIIJR (2013) Protein analysis by shotgun/bottom-up proteomics. Chem Rev 113:2343–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Sauvé RJ, Liu Z, Reddy S, Bhatti S, Hucko SD, Fish T, Thannhauser TW (2011) Identification of salt-induced changes in leaf and root proteomes of the wild tomato, Solanum chilense. J Am Soc Hortic Sci 136:288–302

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farhat, N., Debez, A. (2019). Molecular Mechanisms of Osmotic Stress Recovery in Extremophile Plants: What Can We Learn from Proteomics?. In: Hasanuzzaman, M., Nahar, K., Öztürk , M. (eds) Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes. Springer, Singapore. https://doi.org/10.1007/978-981-13-3762-8_7

Download citation

Publish with us

Policies and ethics