Skip to main content

An Overview of the Germination Behavior of Halophytes and Their Role in Food Security

  • Chapter
  • First Online:
Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes

Abstract

Halophytes, as differently oriented salt-tolerant plants, can provide a solution for our future food security. Lately, much attention is being paid toward the salt tolerance mechanism of halophytes, and attempts are made to provide fundamental knowledge for their genetical, agricultural, biotechnological aspects. As a dominating rule in the plant world, the most fragile and vulnerable developmental stage is germination. This holds true for the halophytes as well. Pre-germination adaptations and seed characteristics are important for the next generations. Adaptation mechanisms change with taxa, habitat type, and life span. Annual halophytes have dormancy mechanisms to avoid germination during unavailable period. Seed polymorphism is also one of the adaptations of halophytes against salinity and environmental fluctuations. For perennial halophytes, vegetative reproduction and long life span decrease the dependence on seed dormancy. Both annual and perennial halophytes guarantee their next generations by producing long-term or short-term seed banks. Evaluation of our knowledge related to these mechanisms can provide information for their propagation on saline habitats and reclamation of our degraded saline soils. They can provide a source for industrial products as well. Their evaluation can be used to put forward solutions for the food security of humans and animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelly C, Barhoumi Z, Ghnaya T, Debez A, Hamed KB, Ksouri R, Talbi O, Zribi F, Ouerghi Z, Smaoui A, Huchzermeyer B, Grignon C (2006) Potential utilisation of halophytes for the rehabilitation and valorisation of saltaffected areas in Tunisia. In: Öztürk M, Waisel Y, Khan MA, Görk G (eds) Biosaline agriculture and salinity tolerance in plants. Birkhauser Verlag, Switzerland, pp 163–172

    Chapter  Google Scholar 

  • Abdelly C, Öztürk M, Ashraf M, Grignon C (eds) (2008) Biosaline Agriculture and High Salinity Tolerance. Birkhauser Verlag-AG (Springer Science), Basel. 367 pp

    Google Scholar 

  • Adams VM, Marsh DM, Knox JS (2005) Importance of the seed bank for population viability and population monitoring in a threatened wetland herb. Biol Conserv 124:425–436

    Article  Google Scholar 

  • Ameixa O, Marques B, Fernandes VS, Soares A, Calado R, Lillebo AI (2016) Dimorphic seeds of Salicornia ramosissima display contrasting germination responses under different salinities. Ecol Eng 87:120–123

    Article  Google Scholar 

  • Ashraf M, Öztürk M, Athar HR (eds) (2009) Salinity and water stress: improving crop efficiency, Tasks for vegetation science, vol 44. Springer, New York. 244 pp

    Google Scholar 

  • Aziz S, Khan MA (1996) Seed bank dynamics of a semi-arid coastal shrub community in Pakistan. J Arid Environ 34:81–87

    Article  Google Scholar 

  • Badger KS, Ungar IA (1990) Seedling competition and the distribution of Hordeum jubatum L. along a soil salinity gradient. Funct Ecol 4:639–644

    Article  Google Scholar 

  • Badger KS, Ungar IA (1994) Seed bank dynamics in an inland salt marsh, with special emphasis on the halophyte Hordeum jubatum L. Int J Plant Sci 155:66–72

    Article  Google Scholar 

  • Bahrani MJ, Niknejad-Kazempour H (2007) Effect of dormancy breaking treatments and salinity on seed germination of two desert shrubs. Arid Land Res Manag 21:107–118

    Article  CAS  Google Scholar 

  • Bajji M, Kinet JM, Lutts S (2002) Water potential and effects on germination and seedling growth, and ion content of Atriplex halimus (Chenopodiaceae). Can J Bot 80:297–304

    Article  CAS  Google Scholar 

  • Baskin CC (2003) Breaking physical dormancy in seeds – focussing on the lens. New Phytol 158:229–232

    Article  Google Scholar 

  • Baskin CC, Baskin J (1998) Seeds ecology, biogeography, and, evolution of dormancy and germination. Academic, New York

    Google Scholar 

  • Baskin JM, Baskin CC (2004) A classification system for seed dormancy. Seed Sci Res 14:1–16

    Article  Google Scholar 

  • Baskin JM, Baskin CC, Li X (2000) Taxonomy, anatomy and evolution of physical dormancy. Plant Species Biol 15:139–152

    Article  Google Scholar 

  • Bekker RM, Schaminee JH, Bakker JP, Thompson K (1998) Seed bank characteristics of Dutch plant communities. Acta Bot Neerl 47:15–26

    Google Scholar 

  • Berger A (1985) Seed dimorphism and germination behavior in Salicornia patula. Vegetation 61:137–143

    Article  Google Scholar 

  • Bewley J (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt A, Santo A (2016) Germination and recovery of heteromorphic seeds of Atriplex canecens (Amaranthaceae) under increasing salinity. Plant Ecol 217:1069–1079

    Article  Google Scholar 

  • Bhatt A, Santo A, Gallacher D (2016) Seed mucilage effect on water uptake and germination in five species from the hyper-arid Arabian desert. J Arid Environ 128:73–79

    Article  Google Scholar 

  • Breen CM, Everson C, Rogers K (1977) Ecological studies on Sporpbolus virginicus (L.) Kunth with particular reference to salinity and inundation. Hydrobiologia 54:135–140

    Article  Google Scholar 

  • Bromham L (2015) Macroevolutionary patterns of salt tolerance in angiosperms. Ann Bot 115:333–341

    Article  CAS  PubMed  Google Scholar 

  • Cao D, Baskin CC, Baskin JM, Yang F, Huang Z (2012) Comparison of germination and seed bank dynamics of dimorphic seeds of the cold desert halophyte Suaeda corniculata subsp. mongolica. Ann Bot 110:1545–1558

    Article  PubMed  PubMed Central  Google Scholar 

  • Carter TC, Ungar IA (2003) Germination responses of dimorphic seeds of two halophyte species to environmentally controlled and natural habitats. Can J Bot 81:918–926

    Article  Google Scholar 

  • Chapman VJ (1974) Salt marshes and salt deserts of the world. In: Reimond RJ, Queen WH (eds) Ecology of halophytes. Academic Press, New York, pp 3–19

    Chapter  Google Scholar 

  • Chen J-H, Jiang H-W, Hsieh E-J, Chen H-Y, Chien C-T, Hsieh H-L, Lin T-P (2012a) Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol 158:340–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Wang Z, Zhu Y, Li Z, Hussain N, Xuan L, Guo W, Zhang G, Jiang L (2012b) The effect of transparent testa on seed fatty acid biosynthesis and tolerance to environmental stresses during young seedling establishment in Arabidopsis. Plant Physiol 160:1023–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Çınar IB, Ayyıldız G, Yaprak AE, Tuğ GN (2016) Effect of salinity and light on germination of Salsola grandis Freitag, Vural and N. Adıgüzel (Chenopodiaceae). Commun Fac Sci Univ Ank Series C 25:25–32

    Google Scholar 

  • Clarke LD, Hannon NJ (1971) The mangrove swamp and salt marsh communities of the Sydney District. IV. The significance of species interaction. J Ecol 59:535–553

    Article  Google Scholar 

  • Clarke AE, Andreson RL, Stone BA (1979) Form and function of arabinogalactans and arabinogalactan-proteins. Phytochemistry 18:521–540

    Article  CAS  Google Scholar 

  • Climate change (2001) Third assessment report of the Intergovernmental Panel on Climate Change IPCC (WG I&II). Cambridge University Press, UK

    Google Scholar 

  • Çolak ÖF, Atasagun B, Yıldıztugay E, Küçüködük M (2017) Breaking of seed dormancy in halophytic endemic Saponaria halophila Hedge & Hub.-Mor. Bangladesh J Bot 46:203–210

    Google Scholar 

  • Craufurd PQ, Wheeler TR (2009) Climate change and flowering time of annual crops. J Exp Bot 60:2529–2539

    Article  CAS  PubMed  Google Scholar 

  • Davy AJ, Bishop GF, Costa CSB (2001) Salicornia L. (Salicornia pusilla J. Woods, S. Ramosissima J. Woods, S. Europaea L., S. Obscura P.W. Ball & Tutin, S. Nitens P.W. Ball & Tutin, S. Fragilis P.W. Ball & Tutin and S. Dolichostachya Moss). J Ecol 89:681–707

    Article  Google Scholar 

  • Egan TP, Ungar IA (1999a) The effects of temperature and seasonal change on the germination of salt marsh species along a salinity gradient. Int J Plant Sci 160:861–867

    Article  CAS  PubMed  Google Scholar 

  • Egan TP, Ungar IA (1999b) Similarity between seed banks and aboveground vegetation along a salinity gradient. J Veg Sci 11:189–194

    Article  Google Scholar 

  • Egan TP, Ungar IA, Meekins JF (1997) The effect of different salts of sodium and potassium on the germination of Atriplex prostrata (Chenopodiaceae). J Plant Nutr 20:1723–1730

    Article  CAS  Google Scholar 

  • El-Keblawy AA, Al-Shamsi N (2008) Effects of salinity, temperature and light on seed germination of Haloxylon salicornicum, a common perennial shrub of the Arabian deserts. Seed Sci Technol 36:679–688

    Article  Google Scholar 

  • El-Keblawy AA, Bhatt A (2015) Aerial seed bank affects germination in two small-seeded halophytes in Arab Gulf desert. J Arid Environ 117:10–17

    Article  Google Scholar 

  • El-Keblawy AA, Bhatt A, Gairola S (2014) Perianth colour affects germination behaviour in wind-pollinated Salsola rubescens in Arabian deserts. Botany 92:69–75

    Article  Google Scholar 

  • Ericksen PJ (2008) Conceptualizing food systems for global environmental change research. Glob Environ Chang 18:234–245

    Article  Google Scholar 

  • FAO (2017) Global network on integrated soil management for sustainable use of salt affected soils. Natural Resources and Environment, FAO, Rome. Available at: www.fao.org/ag/AGL/agII/spush/intro.htm

  • Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    Article  CAS  PubMed  Google Scholar 

  • Fisher M, Mattheis D (1998) Experimental demography of the rare Gentianella germanica: seed bank formation and microsite effects on seedling establishment. Ecography 21:269–278

    Article  Google Scholar 

  • Foolad MR, Chen FQ, Lin GY (1998) RFLP mapping of QTLs conferring salt tolerance during germination in an interspecific cross of tomato. Theor Appl Genet 97:1133–1144

    Article  CAS  Google Scholar 

  • Foolad MR, Lin GY, Chen FQ (1999) Comparison of QTLs for seed germination under non-stress, cold stress and salt stress in tomato. Plant Breed 118:167–173

    Article  Google Scholar 

  • Gallagher JL (1985) Halophytic crops for cultivation at sea water salinity. Plant Soil 89:323–336

    Article  Google Scholar 

  • Ghanem ME, Han R, Classen B, Quetin-Leclerq J, Mahy G, Ruan C, Qin P, Perez-Alfocea F, Lutts S (2010) Mucilage and polysaccharides in the halophyte plant species Kosteletzkya virginica: localization and composition in relation to salt stress. J Plant Physiol 167:382–392

    Article  CAS  Google Scholar 

  • Goldstein G, Nobel PS (1991) Changes in osmotic pressure and mucilage during low-temperature acclimation of Opuntia ficus-indica. Plant Physiol 97:954–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Grebmer K, Ringler C, Rosegrant MW, Olofinbiyi T, Wiesmann D, Fritschel H, Badiane O, Torero M, Yohannes Y, Thompson J, von Oppeln C, Rahall J (2012) Global hunger index. the challenge of hunger: ensuring sustainable food security under land, water, and energy stresses. IFPRI, Washington DC

    Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Grenot CJ (1974) Physical and vegetational aspects of the Sahara Desert. In: Brown GW (ed) Desert biology. Academic, New York, pp 103–164

    Chapter  Google Scholar 

  • Grime JP, Mason G, Curtis AV, Rodman J, Band SR (1981) A comparative study of germination characteristics in a Local Flora. J Ecol 69:1017–1059

    Article  Google Scholar 

  • Gul B, Weber DJ (2001) Seed bank dynamics in a Great Basin salt playa. J Arid Environ 49:785–879

    Article  Google Scholar 

  • Gul B, Ansari R, Flowers TJ, Khan MA (2013) Germination strategies of halophyte seeds under salinity. Environ Exp Bot 92:4–18

    Article  CAS  Google Scholar 

  • Gulzar S, Khan MA (1994) Seedbanks of coastal shrub communities. Ecoprint 1:1–6

    Google Scholar 

  • Gulzar S, Khan MA (2001) Seed germination of halophytic grass Aeluropus lagopoides. Ann Bot 87:319–324

    Article  Google Scholar 

  • Gulzar S, Khan MA, Ungar IA (2001) Effect of temperature and salinity on the germination of Urochondra setulosa. Seed Sci Technol 29:21–29

    Google Scholar 

  • Günster A (1992) Aerial seed banks in the central namib: distribution of serotinous plants in relation to climate and habitat. J Biogeogr 19:563–572

    Article  Google Scholar 

  • Hakeem KR, Parvaiz A, Öztürk M (eds) (2013) Crop improvement-new approaches and modern techniques. Springer, New York. 493 pp

    Google Scholar 

  • Hanslin H, Eggen T (2005) Salinity tolerance during germination of seashore halophytes and salt-tolerant grass cultivars. Seed Sci Res 15:43–50

    Article  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M, Ahmad P, Chandna R, MNV P, Öztürk M (2013) Enhancing plant productivity under salt stress- relevance of poly-omics. In: Ahmad P, Azooz MM, Prasad MNV (eds) Salt stress in plants: signalling, omics and adaptations. Springer Verlag, New York, pp 113–156

    Chapter  Google Scholar 

  • Hattori T, Vasil V, Rosenkrans L, Hannah LC, McCarty DR, Vasil IK (1992) The Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Genes Dev 6:609–618

    Article  CAS  PubMed  Google Scholar 

  • Hilhorst HWM (1995) A critical update on seed dormancy. I. Primary dormancy. Seed Sci Res 5:61–73

    Article  CAS  Google Scholar 

  • Hu YZ, Zeng YL, Guan B, Zhang FC (2012) Overexpression of a vacuolar H+−pyrophosphatase and a B subunit of H+-ATPase cloned from the halophyte Halostachys caspica improves salt tolerance in Arabidopsis thaliana. Plant Cell Tissue Organ Cult 108:63–71

    Article  CAS  Google Scholar 

  • Imbert E (2002) Ecological consequences and ontogeny of seed heteromorphism. Perspect Plant Ecol Evol Syst 5:13–36

    Article  Google Scholar 

  • Islam MN, Wilson CA, Watkins TR (1982) Nutritional evaluation of seashore mallow seed, K. virginica. J Agric Food Chem 30:1195–1198

    Article  CAS  PubMed  Google Scholar 

  • Jefferies RL, Davy AJ, Rudmick J (1981) Population biology of the salt marsh annual Salicornia europaea agg. J Ecol 69:17–31

    Article  Google Scholar 

  • Jefferies RL, Jensen A, Bazely D (1983) The biology of the annual Salicornia europaea agg., at the limit of its range in Hudson Bay. Can J Bot 61:762–773

    Article  Google Scholar 

  • Jha B, Lal S, Tiwari V, Yadav SK, Agarwal PK (2012) The SbASR-1 gene cloned from an extreme halophyte Salicornia brachiata enhances salt tolerance in transgenic tobacco. Mar Biotechnol 14:782–792

    Article  CAS  Google Scholar 

  • Joshi R, Ramanarao MV, Baisakh N (2013) Arabidopsis plants constitutively overexpressing a myo-inositol 1-phosphate synthase gene (SaINO1) from the halophyte smooth cordgrass exhibits enhanced level of tolerance to salt stress. Plant Physiol Biochem 65:61–66

    Article  CAS  PubMed  Google Scholar 

  • Jutila HME (1998) Effect of different treatments on the seed bank of grazed and ungrazed Baltic seashore meadows. Can J Bot 76:1188–1197

    Google Scholar 

  • Kafi M, Öztürk M (2011) Paradox of halophyte utilization as biofuel resources and land sustainability. In: Öztürk M, Mermut AR, Celik A (eds) Urbanisation, land use, land degradation and environment. Daya Publishing House, Delhi, pp 299–314

    Google Scholar 

  • Kalisz S, McPeek MA (1993) Extinction dynamics, population growth and seed banks. Oecologia 95:314–320

    Article  PubMed  Google Scholar 

  • Karan R, Subudhi PK (2014) Overexpression of an adenosine diphosphate-ribosylation factor gene from the halophytic grass Spartina alterniflora confers salinity and drought tolerance in transgenic Arabidopsis. Plant Cell Rep 33(2):373–384

    Article  CAS  PubMed  Google Scholar 

  • Kasera PK, Mohammed S (2010) Ecology of inland saline plants. In: Ramawat KG (ed) Desert plants. Springer, Germany, pp 299–320

    Chapter  Google Scholar 

  • Katembe WJ, Ungar IA, Mitchell JP (1998) Effect of salinity on germination and seedling growth of two Atriplex species (Chenopodiaceae). Ann Bot 82:167–175

    Article  Google Scholar 

  • Keiffer CH, Ungar IA (1997) The effect of extended exposure to hypersaline conditions on the germination of five inland halophytes species. Am J Bot 84:104–111

    Article  Google Scholar 

  • Kelly KM, Van Staden J, Bell WE (1992) Seed coat and dormancy. Plant Growth Regul 11:201–209

    Article  Google Scholar 

  • Khan MA (1993) Relationship of seed bank to plant distribution in saline arid communities. Pak J Bot 25:73–82

    Google Scholar 

  • Khan MA, Gul B (1998) High salt tolerance in germinating dimorphic seeds of Arthrocnemum indicum. Int J Plant Sci 159:826–832

    Article  Google Scholar 

  • Khan MA, Gul B (2006) Halophyte seed germination. In: Khan M, Weber D (eds) Ecophysiology of high salinity tolerant plants. Tasks for vegetation science. Springer, Dordrecht

    Chapter  Google Scholar 

  • Khan MA, Gulzar S (2003) Germination responses of Sporobolus ioclados: a potential forage grass. J Arid Environ 53:387–394

    Article  Google Scholar 

  • Khan MA, Ungar IA (1996) Influence of salinity and temperature on the germination of Haloxylon recurvum. Ann Bot 78:547–551

    Article  Google Scholar 

  • Khan MA, Ungar IA (1997) Alleviation of seed dormancy in the desert forb Zygophyllum simplex L. from Pakistan. Ann Bot 80:395–400

    Article  CAS  Google Scholar 

  • Khan MA, Ungar IA (2000) Alleviation of salinity enforced dormancy in Atriplex griffithii Moq. var. stocksii Boiss. Seed Sci Technol 25:83–91

    Google Scholar 

  • Khan MA, Ungar IA (2001) Alleviation salinity stress and the response to temperature in two seed morphs of Halopyrum mucronatum (Poaceae). Aust J Bot 49:777–783

    Article  CAS  Google Scholar 

  • Khan M, ÖztürkM GB, Ahmed MZ (2016) Halophytes for food security in dry lands. Academic Press, Elsevier, New York, p 360

    Google Scholar 

  • Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:33–36

    Article  CAS  PubMed  Google Scholar 

  • Lamont BB, Le Maitre DC, Cowling RM, Enright NJ (1991) Canopy seed storage in woody plants. Bot Rev 57:277–317

    Article  Google Scholar 

  • Li BL, Foley ME (1997) Genetic and molecular control of seed dormancy. Trends Plant Sci 2:384–389

    Article  Google Scholar 

  • Li W, Liu X, Khan MA, Yamaguchi S (2005) The effect of plant growth regulators, nitric oxide, nitrate, nitrite and light on the germination of dimorphic seeds of Suaeda salsa under saline conditions. J Plant Res 118:207–214

    Article  CAS  PubMed  Google Scholar 

  • Li W, Wang D, Jin T, Chang Q, Yin D, Xu S, Liu B, Liu L (2011) The vacuolar Na+/H+ antiporter gene SsNHX1 from the halophyte Salsola soda confers salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant Mol Biol Rep 29:278–290

    Article  CAS  Google Scholar 

  • Lin P-C, Hwang S-G, Endo A, Okamoto M, Koshiba T, Cheng W-H (2007) Ectopic expression of abscisic acid 2/glucose insensitive 1 in Arabidopsis promotes seed dormancy and stress tolerance. Plant Physiol 143:745–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macke A, Ungar IA (1971) The effect of salinity on germination and early growth of Puccinellia nuttalliana. Can J Bot 49:515–520

    Article  Google Scholar 

  • Mano Y, Takeda K (1997) Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica 94:263–272

    Article  Google Scholar 

  • Moody-Weis J, Alexander HM (2007) The mechanisms and consequences of seed bank formation in wild sunflowers (Helianthus annuus). J Ecol 95:851–864

    Article  Google Scholar 

  • Morgan WC, Myers BA (1989) Germination characteristics of the salt tolerant grass Diplachne fusca. I. Dormancy and temperature responses. Aust J Bot 37:225–237

    Article  Google Scholar 

  • Morse SR (1990) Water balance in Hemizonia luzulifolia: the role of extracellular polysaccharides. Plant Cell Environ 13:39–48

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Nichols PGH, Craig AD, Rogers ME, Albertsen TO, Miller SM, McClements DR, Hughes SJ, D’Antuono MF, Dear BS (2008) Production and persistence of annual pasture legumes at five saline sites in southern Australia. Aust J Exp Agric 48:518–535

    Article  Google Scholar 

  • Nichols PGH, Malik AI, Stockdale M, Colmer TD (2009) Salt tolerance and avoidance mechanisms at germination of annual pasture legumes: iImportance for adaptation to saline environments. Plant Soil 315:241–255

    Article  CAS  Google Scholar 

  • Nikolaeva M (2004) On criteria to use in studies of seed evolution. Seed Sci Res 14:315–320

    Article  Google Scholar 

  • Nobel PS, Cavelier J, Andrade JL (1992) Mucilage in cacti—its apoplastic capacitance associated solutes, and influence on tissue water relations. J Exp Bot 43:641–648

    Article  Google Scholar 

  • Nonogaki H (2014) Seed dormancy and germination—emerging mechanisms and new hypotheses. Front Plant Sci 5:233–251

    Article  PubMed  PubMed Central  Google Scholar 

  • Öztürk M, Waisel Y, Khan MA, Gork G (eds) (2006) Biosaline agriculture and salinity tolerance in plants. Springer, Basel. 205 pp

    Google Scholar 

  • Öztürk MA, Ashraf M, Grignon C (2008a) Biosaline agriculture and high salinity tolerance. Birkhauser Verlag (Springer Science), Basel. 367 pp

    Google Scholar 

  • Öztürk M, Guvensen A, Gucel S (2008b) Ecology and economic potential of halophytes–a case study from Turkey. In: Kafi M, Khan MA (eds) Crop and forage production using saline waters. Daya Publishing House, Delhi, pp 255–264

    Google Scholar 

  • Öztürk M, Hakeem KR, Faridah-Hanum I, Efe R (eds) (2015) Climate change impacts on high-altitude ecosystems. Springer, New York, p 695

    Google Scholar 

  • Öztürk M, Altay V, Altundag E, Gucel S (2016) Halophytic plant diversity of unique habitats in Turkey: Salt Mine Caves of Çankırı and Iğdır. In: Khan MA, Oztruk M, Gul B, Ahmed MZ (eds) Halophytes for food security in dry lands. Academic, New York, pp 291–315

    Chapter  Google Scholar 

  • Öztürk M, Hakeem KR, Ashraf M, Ahmad MSA (2018) Global perspectives on underutilized crops. Springer, New York

    Book  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Parsons RF (2012) Incidence and ecology of very fast germination. Seed Sci Res 22:161–167

    Article  Google Scholar 

  • Petruzzelli L, Melillo MT, Zacheo TB, Taranto G (1992) Physiological and ultrastructural changes in isolated wheat embryos during salt and osmotic shock. Ann Bot 69:25–31

    Article  Google Scholar 

  • Philipupillai J, Ungar IA (1984) The effect of seed dimorphism on the germination and survival of Salicornia europaea L. populations. Am J Bot 71:542–549

    Article  Google Scholar 

  • Pinstrup-Andersen P (2009) Food security: definition and measurement. Food Secur 1:5–7

    Article  Google Scholar 

  • Pirie A, Mullins MG (1976) Changes in anthocyanin and phenolics content of grapevine leaf and fruit tissues treated with sucrose, nitrate, and abscisic acid. Plant Physiol 58:468–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poljakoff-Mayber A, Somers GF, Werker E, Gallagher JL (1994) Seeds of Kosteletzkya virginica (Malvaceae): their structure, germination and salt tolerance. II. Germination and salt tolerance. Am J Bot 81:54–59

    Article  Google Scholar 

  • Pujol AJ, Calvo JF, Ramiraz–Diaz L (2000) Recovery germination from different osmotic conditions by four halophytes from southeastern Spain. Ann Bot 85:279–286

    Article  Google Scholar 

  • Quesada V, Garcıa-Martınez S, Piqueras P, Ponce MR, Micol JL (2002) Genetic architecture of NaCl tolerance in Arabidopsis. Plant Physiol 130:951–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajagopal D, Agarwal P, Tyagi W, Singla-Pareek SL, Reddy MK, Sopory SK (2007) Pennisetum glaucum Na+/H+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea. Mol Breed 19:137–151

    Article  CAS  Google Scholar 

  • Rauf M, Shahzad K, Ali R, Ahmad M, Habib I, Mansoor S, Berkowitz G, Saeed NA (2014) Cloning and characterization of Na+/H+ antiporter (LfNHX1) gene from a halophyte grass Leptochloa fusca for drought and salt tolerance. Mol Biol Rep 41:1669–1682

    Article  CAS  PubMed  Google Scholar 

  • Redfield AC (1972) Development of a New England salt marsh. Ecol Monogr 42:201–237

    Article  Google Scholar 

  • Saad RB, Zouari N, Ramdhan WB, Azaza J, Meynard D, Guiderdoni E, Hassairi A (2010) Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger “AlSAP” gene isolated from the halophyte grass Aeluropus littoralis. Plant Mol Biol 72:171–190

    Article  PubMed  CAS  Google Scholar 

  • Sen DN, Rajpurohit KS (1982) Contributions to the ecology of halophytes. Springer, Dordrecht

    Book  Google Scholar 

  • Sen DN, Kasera PK, Mohammed S (2002) Biology and physiology of saline plants. In: Pessarakli M (ed) Handbook of plant and crop physiology, 2nd edn. Dekker, New York, pp 563–581

    Google Scholar 

  • Sharma TP, Sen DN (1989) A new report on abnormally fast germinating seeds of Haloxylon spp. – an ecological adaptation to saline habitat. Curr Sci 58:382–385

    Google Scholar 

  • Song J, Feng G, Changyan T, Zhang F (2005) Strategies for adaptation of Suaeda physophora, Haloxylon ammodendron, and Haloxylon persicum to a saline environment during seed-germination stage. Ann Bot 96:399–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song J, Shi W, Liu R, Xu Y, Sui Y, Zhou J, Feng G (2017) The role of seed coat in adaptation of dimorphic seeds of the euhalophyte Suaeda salsa to salinity. Plant Species Biol 32:107–114

    Article  Google Scholar 

  • Takeno K, Yamaguchi H (1991) Diversity in seed germination behavior in relation to heterocarpy in Salsola komarovii Iljin. H. Bot Mag Tokyo 104:207–215

    Article  Google Scholar 

  • Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749

    Article  CAS  PubMed  Google Scholar 

  • Taylor AG, Min TG, Mallaber CA (1991) Seed coating system to upgrade Brassicaceae seed quality by exploiting sinapine leakage. Seed Sci Technol 19:423–434

    Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornton PK, Ericksen PJ, Herrero M, Chanllinor AJ (2014) Climate variability and vulnerability to climate change: a review. Glob Chang Biol 20:3313–3328

    Article  PubMed  PubMed Central  Google Scholar 

  • Tobe K, Zang L, Omasa K (1999) Effects of NaCl on seed germination and growth of five nonhalophytic species from a Chinese desert environment. Seed Sci Technol 27:851–863

    Google Scholar 

  • Tobe K, Li X, Omasa K (2000) Effects of sodium chloride on seed germination and growth of two Chinese desert shrubs, Haloxylon ammodendron and H. Persicum (Chenopodiaceae). Aust J Bot 48:455–460

    Article  CAS  Google Scholar 

  • Ungar IA (1974) Inland halophytes of the United States. In: Reimond RJ, Queen WH (eds) Ecology of halophytes. Academic Press, New York, pp 235–305

    Chapter  Google Scholar 

  • Ungar IA (1978) Halophyte seed germination. Bot Rev 44:233–264

    Article  CAS  Google Scholar 

  • Ungar IA (1979) The effect of seed reserves on species composition in zonal halophyte communities. Bot Gaz 141:447–452

    Article  Google Scholar 

  • Ungar IA (1982) Germination ecology of halophytes. In: Sen DN, Rajpurohit KS (eds) Contributions to the ecology of halophytes. Tasks for vegetation science. Springer, Dordrecht, pp 143–154

    Chapter  Google Scholar 

  • Ungar IA (1987a) Population characteristics, growth, and survival of the halophyte Salicornia europaea. Ecology 68:569–575

    Article  Google Scholar 

  • Ungar IA (1987b) Population ecology of halophyte seeds. Bot Rev 53:301–334

    Article  Google Scholar 

  • Ungar IA (1995) Seed germination and seed-bank ecology in halophytes. In: Kigel J, Galili G (eds) Seed development and seed germination. Marcel Dekker, New York, pp 599–628

    Google Scholar 

  • Ungar IA (1996) Effect of salinity on seed germination, growth, and ion accumulation of Atriplex patula (Chenopodiaceae). Am J Bot 83:604–607

    Article  Google Scholar 

  • Ungar IA (2001) Seed banks and seed population dynamics of halophytes. Wetl Ecol Manag 9:499–510

    Article  Google Scholar 

  • Ungar IA, Woodell SRJ (1993) The relationship between the seed bank and species composition of plant communities in two British salt marshes. J Veg Sci 4:531–536

    Article  Google Scholar 

  • Ungar IA, Woodell SRJ (1996) Similarity of seed banks to aboveground vegetation in grazed and ungrazed communities on the Gower peninsula, South Wales. Int J Plant Sci 157:746–749

    Article  Google Scholar 

  • Venable DL (1985) The evolutionary ecology of seed heteromorphism. Am Nat 126:577–595

    Article  Google Scholar 

  • Vleeshouwers LM, Bouwmeester HJ, Karssen CM (1995) Redefining seed dormancy: an attempt to integrate physiology and ecology. J Ecol 83:1031–1037

    Article  Google Scholar 

  • Waisel Y (1972) Biology of halophytes. Academic, New York

    Google Scholar 

  • Wallace A, Rhoads WA, Frolich EF (1968) Germination behaviour of Salsola as influenced by temperature, moisture, depth of planting and gamma irradiation. Agron J 60:76–78

    Article  Google Scholar 

  • Wang L, Huang Z, Baskin CC, Baskin JM, Dong M (2008) Germination of dimorphic seeds of the desert annual halophyte Suaeda aralocaspica (Chenopodiaceae), a C4 plant without Kranz anatomy. Ann Bot 102:757–769

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Baskin JM, Baskin CC, Hans J, Cornelissen C, Dong M, Huang Z (2012) Seed dimorphism, nutrients and salinity differentially affect seed traits of the desert halophyte Suaeda aralocaspica via multiple maternal effects. BMC Plant Biol 12:170. https://doi.org/10.1186/1471-2229-12-170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Tian C, Wang L (2017) Germination of dimorphic seeds of Suaeda aralocaspica in response to light and salinity conditions during and after cold stratification. Peer J 5:e3671. https://doi.org/10.7717/peerj.3671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Dong M, Huang ZY (2007) Seed polymorphism, dormancy and germination of Salsola affinis (Chenopodiaceae), a dominant desert annual inhabiting the Junggar Basin of Xinjiang, China. Aust J Bot 55:464–470

    Article  Google Scholar 

  • Wei Y, Dong M, Huang ZY, Tan DY (2008) Factors influencing seed germination of Salsola affinis (Chenopodiaceae), a dominant annual halophyte inhabiting the deserts of Xinjiang, China. Flora 203:134–140

    Article  Google Scholar 

  • Wertis BA, Ungar IA (1986) Seed demography and seedling survival in a population of Atriplex triangularis Willd. Am Midl Nat 116:152–162

    Article  Google Scholar 

  • Wheeler T, von Braun J (2013) Climate change impacts on global food security. Science 341:508–513

    Article  CAS  PubMed  Google Scholar 

  • World Food Summit (1996) Rome declaration on world food security. Rome

    Google Scholar 

  • Xing J, Cai M, Chen S, Chen L, Lan H (2013) Seed germination, plant growth and physiological responses of Salsola ikonnikovii to short-term NaCl stress. Plant Biosyst 147:285–297

    Article  Google Scholar 

  • Xu XJ, Zhou YJ, Ren DT, Bu HH, Feng JC, Wang GY (2014) Cloning and characterization of gene encoding a Mn-containing superoxide dismutase in Eutrema halophilum. Biol Plant 58:105–113

    Article  CAS  Google Scholar 

  • Yadav N, Shukla P, Jha A, Agarwal P, Jha B (2012) The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biol 12:188. https://doi.org/10.1186/1471-2229-12-188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yıldıztugay E, Küçüködük M (2012) Dormancy breaking and germination requirements for seeds of Sphaerophysa kotschyana Boiss. J Glob Biosci 1:20–27

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank Dr. Münir Öztürk for the support during the preparation of the review and Dr. Isa Baskose for the help for design and preparation of seed photos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gül Nilhan Tuğ .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tuğ, G.N., Yaprak, A.E. (2019). An Overview of the Germination Behavior of Halophytes and Their Role in Food Security. In: Hasanuzzaman, M., Nahar, K., Öztürk , M. (eds) Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes. Springer, Singapore. https://doi.org/10.1007/978-981-13-3762-8_3

Download citation

Publish with us

Policies and ethics