Skip to main content

Design of Underwater Large Sparse 2-D Arrays

  • Chapter
  • First Online:
Underwater Real-Time 3D Acoustical Imaging

Part of the book series: Signals and Communication Technology ((SCT))

  • 745 Accesses

Abstract

A large two-dimensional (2-D) array is mandatory for underwater real-time three-dimensional (3-D) acoustical imaging. To reduce the hardware cost, we need to design sparse large 2-D arrays. In different bandwidths, the design methods should be different. In this chapter, the design methods are presented in narrowband, wideband, and ultrawideband (UWB) respectively. Currently, the most popular narrowband method of designing large 2-D arrays for underwater real-time 3-D imaging is based on simulated annealing. Unfortunately, designing wideband large 2-D arrays is generally limited by the high computational load of computing wideband beam pattern. A fast method of computing wideband beam pattern is introduced. Then, a wideband design example based on the fast method of computing wideband beam pattern is shown. This chapter also reveals that UWB ultrasparse 2-D arrays are promising for obtaining ultralow hardware cost with keeping the same imaging quality. Ultralarge UWB 2-D arrays can help achieve the high angular resolution 0.1° with low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Murino, A. Trucco, Three-dimensional image generation and processing in underwater acoustic vision. Proc. IEEE 88(12), 1903–1948 (2000)

    Article  Google Scholar 

  2. A. Trucco, Thinning and weighting of large planar arrays by simulated annealing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(2), 347–355 (1999)

    Article  Google Scholar 

  3. P. Chen, Y.Y. Zheng, W. Zhu, Optimized simulated annealing algorithms for thinning and weighting large planar arrays in both far-field and near-field. IEEE J. Ocean. Eng. 36(4), 658–664 (2011)

    Article  Google Scholar 

  4. W. Keizer, Large planar array thinning using iterative FFT techniques. IEEE Trans. Antennas Propag. 57(10), 3359–3362 (2009)

    Article  Google Scholar 

  5. P. Chen, B. Shen, L. Zhou, Y. Chen, Optimized simulated annealing algorithm for thinning and weighting large planar arrays. J. Zhejiang Univ-Sci. C (Comput. Electron.) 11(4), 261–269 (2010)

    Article  Google Scholar 

  6. B. Diarra, M. Robini, P. Tortoli, C. Cachard, H. Liebgott, Design of optimal 2-D non-grid sparse arrays for medical ultrasound. IEEE Trans. Biomed. Eng. 60(11), 3093–3102 (2013)

    Article  Google Scholar 

  7. R.L. Haupt, Thinned arrays using genetic algorithms. IEEE Trans. Antennas Propag. 42(7), 993–999 (1994)

    Article  Google Scholar 

  8. K. Chen, X. Yun, Z. He, C. Han, Synthesis of sparse planar arrays using modified real genetic algorithm. IEEE Trans. Antennas Propag. 55(4), 1067–1073 (2007)

    Article  Google Scholar 

  9. D.W. Boeringer, D.H. Werner, Particle swarm optimization versus genetic algorithms for phased arrays systhesis. IEEE Trans. Antennas Propag. 52(3), 771–779 (2004)

    Article  Google Scholar 

  10. A. El-makadema, L. Rashid, A.K. Brown, Geometry design optimization of large-scale broadband antenna systems. IEEE Trans. Antennas Propag. 62(4), 1673–1680 (2014)

    Article  MathSciNet  Google Scholar 

  11. J. Córcoles, M.A. González, Efficient combined array thinning and weighting for pattern synthesis with a nested optimization scheme. IEEE Trans. Antennas Propag. 60(11), 5107–5117 (2012)

    Article  MathSciNet  Google Scholar 

  12. J. Huo, P. Yang, K. Shi, W. Zhang, Optimal design of random sparse 2-D arrays based on genetic algorithm. ACTA ACUSTICA. 31(2), 187–191 (2006)

    Google Scholar 

  13. C. Chi, Z. Li, Fast computation of wideband beam pattern for designing large-scale 2-D arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(6), 803–816 (2016)

    Article  Google Scholar 

  14. J.L. Schwartz, B.D. Steinberg, Ultrasparse, ultrawideband arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(2), 376–393 (1998)

    Article  Google Scholar 

  15. V. Murino, A. Trucco, A. Tesei, Beam pattern formulation and analysis for wide-band beamforming systems using sparse arrays. Sig. Process. 56(2), 177–183 (1997)

    Article  Google Scholar 

  16. B.G. Bardsley, D.A. Christensen, Beam patterns from pulsed ultrasonic transducers using linear systems theory. J. Acoust. Soc. Am. 69(1), 25–30 (1981)

    Article  Google Scholar 

  17. G. Cardone, G. Cincotti, P. Gori, M. Pappalardo, Optimization of wideband linear arrays. IEEE Trans. Ultrason. Ferroelectr. Fre. Control. 48(4), 943–952 (2001)

    Article  Google Scholar 

  18. M. Palmese, A. Trucco, An efficient digital CZT beamforming design for near-field 3-D sonar imaging. IEEE J. Ocean. Eng. 35(3), 584–594 (2010)

    Article  Google Scholar 

  19. R.O. Nielsen, Sonar Signal Process (Chap. 1–2) (Artech House, Boston, 1991)

    Google Scholar 

  20. G. Cardone, G. Cincotti, M. Pappalardo, Design of wide-band arrays for low side-lobe level beam patterns by simulating annealing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(8), 1050–1059 (2002)

    Article  Google Scholar 

  21. J.A. Jensen, N.B. Svendsen, Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(2), 262–267 (1992)

    Article  Google Scholar 

  22. J.A. Jensen, Users’ guide for the FIELD II program. Release 3.24 (2014)

    Google Scholar 

  23. W.J. Hendricks, The totally random versus the bin approach for random arrays. IEEE Trans. Antennas Propag. 39(12), 1757–1762 (1991)

    Article  Google Scholar 

  24. R.E. Davidsen, J.A. Jensen, S.W. Smith, Two-dimensional random arrays for real-time volumetric imaging. Ultrason. Imaging 16, 143–163 (1994)

    Article  Google Scholar 

  25. R.E. Davidsen, S.W. Smith, A multiplexed two-dimensional array for real time volumetric and B-mode imaging, in Proceedings of IEEE Ultrasonics Symposium (1996), pp. 1523–1526

    Google Scholar 

  26. O. Martínez-Graullera, C.J. Martín, G. Godoy, L.G. Ullate, 2D array design based on Fermat spiral for ultrasound imaging. Ultrasonics 50, 280–299 (2010)

    Article  Google Scholar 

  27. A. Trucco, S. Curletto, Flattening the side-lobes of wideband beam patterns. IEEE J. Ocean. Eng. 28(4), 760–762 (2003)

    Article  Google Scholar 

  28. S. Curletto, A. Trucco, On the shaping of the main lobe on wide-band arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(4), 619–629 (2005)

    Article  Google Scholar 

  29. T.G. Spence, D.H. Werner, Design of broadband planar arrays based on the optimization of aperiodic tilings. IEEE Trans. Antennas Propag. 56(1), 76–86 (2008)

    Article  Google Scholar 

  30. A. Trucco, M. Palmese, S. Repetto, Devising an affordable sonar system for underwater 3-D vision. IEEE Trans. Instrum. Meas. 57(10), 2348–2354 (2008)

    Article  Google Scholar 

  31. L.Y. Astanin, A.A. Kostylev, Ultrawideband radar measurements analysis and processing. The Institution of Electrical Engineers (1999), pp. 3–5

    Google Scholar 

  32. V. Sipal, D. Edwards, B. Allen, Bandwidth requirement for suppression of grating lobes in ultrawideband antenna arrays, in Proceedings of IEEE International Conference on Ultra-Wideband (2012), pp. 236–240

    Google Scholar 

  33. C. Chi, Z. Li, Q. Li, Ultrawideband underwater real-time 3-D acoustical imaging with ultra-sparse arrays. IEEE J. Ocean. Eng. 42(1), 97–108 (2017)

    Google Scholar 

  34. C. Chi, Z. Li, Q. Li, High-resolution real-time underwater 3-D acoustical imaging through designing ultralarge ultrasparse ultra-wideband 2-D arrays. IEEE Trans. Instrum. Meas. 66(10), 2647–2657 (2017)

    Article  Google Scholar 

  35. R.J. Urick, Principles of Underwater Sound, 3rd edn. (McGraw-Hill, New York, 1983)

    Google Scholar 

  36. B.D. Steinberg, H.M. Subbaram, Microwave Imaging Techniques (Wiley, New York, 1991)

    Google Scholar 

  37. L.G. Ullate, G. Godoy, O. Martínez, T. Sánchez, Beam steering with segmented annular arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(10), 1944–1954 (2006)

    Article  Google Scholar 

  38. W.H. Thorp, Analytic description of the low frequency attenuation coefficient. J. Acoust. Soc. Am. 42(1), 270 (1967)

    Article  Google Scholar 

  39. F.H. Fisher, V.P. Simmons, Sound absorption in sea water. J. Acoust. Soc. Am. 62(3), 558–564 (1977)

    Article  Google Scholar 

  40. T. Misaridis, J.A. Jesen, Use of modulated excitation signals in medical ultrasound. Part I: basic concepts and expected benefits. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 52(2), 177–191 (2005)

    Article  Google Scholar 

  41. M.A. Richards, Fundamentals of Radar Signal Processing (Chap. 4) (McGraw-Hill Companies. Inc., 2005)

    Google Scholar 

  42. T. Misaridis, J.A. Jesen, Use of modulated excitation signals in medical ultrasound. Part II: design and performance for medical imaging applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 192–207 (2005)

    Article  Google Scholar 

  43. B. Haider, P.A. Lewin, K.E. Thomenius, Pulse elongation and deconvolution filtering for medical ultrasonic imaging. IEEE Trans. Ulrason. Ferroelect. Freq. Control 45(1), 98–113 (1998)

    Article  Google Scholar 

  44. J.A. Jensen, J. Mathorne, T. Gravesen, B. Stage, Deconvolution of in-vivo ultrasound b-mode imaging. Ultrason. Imaging 15, 122–133 (1993)

    Google Scholar 

  45. F. Gran, J.A. Jensen, Designing waveforms for temporal encoding using a frequency sampling method. IEEE Trans. Ulrason. Ferroelect. Freq. Contr. 54(10), 2070–2080 (2007)

    Article  Google Scholar 

  46. R.Y. Chiao, X. Hao, Coded excitation for diagnostic ultrasound: a system developer’s perspective, in Proceedings of IEEE Ultrasonics Symposium (1998), pp. 1639–1644

    Google Scholar 

  47. C. Chi, Z. Li, Q. Li, Fast broadband beamforming using nonuniform fast Fourier transform for underwater real-time 3-D acoustical imaging. IEEE J. Ocean. Eng. 41(2), 249–261 (2016)

    Article  Google Scholar 

  48. M. Palmese, A. Trucco, Acoustic imaging of underwater embedded objects: signal simulation for three-dimensional sonar instrumentation. IEEE Trans. Instrum. Meas. 55(4), 1339–1347 (2006)

    Article  Google Scholar 

  49. Y. Han, X. Tian, F. Zhou, R. Jiang, Y. Chen, A real-time 3-D underwater acoustical imaging system. IEEE J. Ocean. Eng. 39(4), 620–629 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Chi .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chi, C. (2019). Design of Underwater Large Sparse 2-D Arrays. In: Underwater Real-Time 3D Acoustical Imaging. Signals and Communication Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3744-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3744-4_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3743-7

  • Online ISBN: 978-981-13-3744-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics