Skip to main content

Basic Theory for Underwater Real-Time 3-D Acoustical Imaging

  • Chapter
  • First Online:
Underwater Real-Time 3D Acoustical Imaging

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

The data model for underwater real-time three-dimensional (3-D) acoustical imaging is introduced. Three real-time 3-D imaging methods: beamforming, acoustic lens and holograph are analyzed. This chapter points out that beamforming is the most promising method for developing underwater real-time 3-D acoustical imaging systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Murino, A. Trucco, Three-dimensional image generation and processing in underwater acoustic vision. Proc. IEEE 88(12), 1903–1948 (2000)

    Article  Google Scholar 

  2. R.J. Urick, Principles of Underwater Sound, 3rd edn. (McGraw-Hill, New York, 1983)

    Google Scholar 

  3. Z.H. Cho, J.P. Jones, M. Singh, Foundations of Medical Imaging (Wiley, New York, 1993)

    Google Scholar 

  4. M. Palmese, A. Trucco, Acoustic imaging of underwater embedded objects: signal simulation for three-dimensional sonar instrumentation. IEEE Trans. Instrum. Meas. 55(4), 1339–1347 (2006)

    Article  Google Scholar 

  5. O. George, R. Bahl, Simulation of backscattering of high frequency sound from complex objects and sand sea-bottom. IEEE J. Oceanic Eng. 20(2), 119–130 (1995)

    Article  Google Scholar 

  6. T.L. Henderson, S.G. Lacker, Seafloor profiling by a wideband sonar: simulation, frequency-response, optimization, and results of a brief sea test. IEEE J. Oceanic Eng. 14(1), 94–107 (1989)

    Article  Google Scholar 

  7. D.E. Funk, K.L. Williams, A physically motivated simulation technique for high-frequency forward scattering derived using specular point theory. J. Acoust. Soc. Amer. 91(5), 2606–2614 (1992)

    Article  Google Scholar 

  8. W.A. Kinney, C.S. Clay, G.A. Sandness, Scattering from a corrugated surface: comparison between experiment, Helmholtz-Kirchhoff theory, and the facet-ensemble method. J. Acoust. Soc. Amer. 73(1), 183–194 (1993)

    Article  Google Scholar 

  9. C. Chi, Z. Li, Q. Li, High-resolution real-time underwater 3-D acoustical imaging through designing ultralarge ultrasparse ultra-wideband 2-D arrays. IEEE Trans. Instrum. Meas. 66(10), 2647–2657 (2017)

    Article  Google Scholar 

  10. R.E. Francois, G.R. Garrison, Sound absorption based on ocean measurements: part I: pure water and magnesium sulfate contributions. J. Acoust. Soc. Amer. 72(3), 896–907 (1982)

    Article  Google Scholar 

  11. J.L. Sutton, Underwater acoustic imaging. Proc. IEEE 67(4), 554–566 (1979)

    Article  Google Scholar 

  12. P.N. Keating, T. Sawatari, G. Zilinskas, Signal processing in acoustic imaging. Proc. IEEE 67(4), 496–509 (1979)

    Article  Google Scholar 

  13. A. Yamani, Three-dimensional imaging using a new synthetic aperture focusing technique. IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 44(7), 943–947 (1997)

    Article  Google Scholar 

  14. M. Palmese, A. Trucco, An efficient digital CZT beamforming design for near-field 3-D sonar imaging. IEEE J. Ocean. Eng. 35(3), 584–594 (2010)

    Article  Google Scholar 

  15. J. C. Bu, C. J. M. van Ruiten, L. F. van der Wal, Underwater acoustical imaging algorithms. In Proceedings of European Conference on Underwater Acoustics, Luxembourg, Belgium, pp. 717-720 (1992)

    Google Scholar 

  16. R.K. Hansen, P.A. Andersen, 3D acoustic camera for underwater imaging, in Acoustical Imaging, vol. 20, eds. by Y. Wei, B. Gu (Plenum, New York, 1993) pp. 723–727

    Chapter  Google Scholar 

  17. C. De Boor, A practical guide to splines (Springer, New York, 1978)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Chi .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chi, C. (2019). Basic Theory for Underwater Real-Time 3-D Acoustical Imaging. In: Underwater Real-Time 3D Acoustical Imaging. Signals and Communication Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3744-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3744-4_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3743-7

  • Online ISBN: 978-981-13-3744-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics