Skip to main content

Abstract

About one-tenth of the total world population is living with active or passive disability which accounts a lot of money in training and creation of skilled manpower to rehabilitate them. The disability is of the various forms that can be sensory, motor, mixed, or cognitive that makes them inefficient in performing daily task for normal living. This may be acquired or developmental or got before birth or during pregnancy. Older people with chronic conditions are prone to suffer from cognition and memory disorders. In such scenario, it is very difficult to prepare workforce for every individual, but it can be done through the technology-enabled diagnostic, intervention and treatment in combination with the medical professionals. Medical electronics is doing the same thing to provide therapy, assistance, and guidance to the patient and clinicians.

Medical electronics is changing from analog domain to the digital domain with more accuracy and easy handling. Digital advancement is having the potential to change the quality of life of the disabled by providing assistive devices, adaption, and accessible support. Assistive technology is designed to enhance the functional ability of physically disabled community. It is having a wide range of services like IT-enabled support including speech, communication, prosthetics, and rehabilitation. It can be a primary care system for children with developmental delay and autistic population. It opened a way for new technologies like virtual reality and augmented virtual reality that are a new and growing field in today’s world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antfolk C, D’Alonzo M, Rosén B, Lundborg G, Sebelius F, Cipriani C (2013) Sensory feedback in upper limb prosthetics. Expert Rev Med Devices 10(1):45–54

    Article  CAS  Google Scholar 

  • Aung YM, Al-Jumaily A (2012) AR based upper limb rehabilitation system. In: Biomedical Robotics and Biomechatronics (BioRob), 2012 4th IEEE RAS & EMBS International Conference on IEEE, pp 213–218

    Chapter  Google Scholar 

  • Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44(4):625–632

    Article  CAS  Google Scholar 

  • Beltran J (1995) MR imaging of soft-tissue infection. Magn Reson Imaging Clin N Am 3(4):743–751

    CAS  PubMed  Google Scholar 

  • Biddiss E, Chau T (2007) Upper-limb prosthetics: critical factors in device abandonment. Am J Phys Med Rehabil 86(12):977–987

    Article  Google Scholar 

  • Bogue R (2009) Exoskeletons and robotic prosthetics: a review of recent developments. Ind Rob Int J 36(5):421–427

    Article  Google Scholar 

  • Burke JW, McNeill MDJ, Charles DK, Morrow PJ, Crosbie JH, McDonough SM (2010) Augmented reality games for upper-limb stroke rehabilitation. In: 2010 second international conference on games and virtual worlds for serious applications. IEEE, pp 75–78

    Google Scholar 

  • Carr JJ, Brown JM (2001) Introduction to biomedical equipment technology, vol 4. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Clement RGE, Bugler KE, Oliver CW (2011) Bionic prosthetic hands: a review of present technology and future aspirations. Surgeon 9(6):336–340

    Article  CAS  Google Scholar 

  • Correa AGD, De Assis GA, do Nascimento M, Ficheman I, de Deus Lopes R (2007) Genvirtual: an augmented reality musical game for cognitive and motor rehabilitation. In: Virtual Rehabilitation. IEEE, pp 1, 2007–6

    Google Scholar 

  • Dolhem R (2008) The history of electrostimulation in rehabilitation medicine. Annales de readaptation et de medecine physique: revue scientifique de la Societe francaise de reeducation fonctionnelle de readaptation et de medecine physique 51(6):427–431

    Article  CAS  Google Scholar 

  • Drucker P (2012) Management challenges for the 21st century. Routledge, New York

    Google Scholar 

  • Goldstein JI, Newbury DE, Michael JR, Ritchie NWM, Scott JHJ, Joy DC (2017) Scanning electron microscopy and X-ray microanalysis. Springer

    Google Scholar 

  • Goude D, Björk S, Rydmark M (2007) Game design in virtual reality systems for stroke rehabilitation. Stud Health Technol Inform 125(2007):146–148

    PubMed  Google Scholar 

  • Holden MK (2005) Virtual environments for motor rehabilitation. Cyberpsychol Behav 8(3):187–211

    Article  Google Scholar 

  • Iniewski K (ed) (2009) Medical imaging: principles, detectors, and electronics. Wiley

    Google Scholar 

  • Jack D, Boian R, Merians A, Adamovich SV, Tremaine M, Recce M, Burdea GC, Poizner H (2000) A virtual reality-based exercise program for stroke rehabilitation. In: Proceedings of the fourth international ACM conference on assistive technologies. ACM, pp 56–63

    Google Scholar 

  • Keevil SF (2012) Physics and medicine: a historical perspective. Lancet 379(9825):1517–1524

    Article  CAS  Google Scholar 

  • Kowalczewski J, Chong SL, Galea M, Prochazka A (2011) In-home tele-rehabilitation improves tetraplegic hand function. Neurorehabil Neural Repair 25(5):412–422

    Article  Google Scholar 

  • Lee JH, Jeonghun K, Cho W, Hahn WY, In YK, Lee S-M, Kang Y et al (2003) A virtual reality system for the assessment and rehabilitation of the activities of daily living. Cyber Psychol Behav 6(4):383–388

    Article  Google Scholar 

  • Lloyd C, Waghorn G, Williams PL (2008) Conceptualising recovery in mental health rehabilitation. Br J Occup Ther 71(8):321–328

    Article  Google Scholar 

  • Lowe VJ, Fletcher JW, Gobar L, Lawson M, Kirchner P, Valk P, Karis J et al (1998) Prospective investigation of positron emission tomography in lung nodules. J Clin Oncol 16(3):1075–1084

    Article  CAS  Google Scholar 

  • Lucca LF (2009) Virtual reality and motor rehabilitation of the upper limb after stroke: a generation of progress? J Rehabil Med 41(12):1003–1006

    Article  Google Scholar 

  • McCord JF, Grant AA (2000) Prosthetics: pre-definitive treatment: rehabilitation prostheses. Br Dent J 188(8):419

    Article  CAS  Google Scholar 

  • Nokes L, Jennings DFTT, Flint T, Turton B (1995) Introduction to medical electronics applications. Butterworth-Heinemann

    Google Scholar 

  • O’Desky RI, Ball MJ, Ball EE (1990) Computers in health care for the 21st century. Methods Inf Med 29(02):158–161

    Article  Google Scholar 

  • Ojha AK (1994) An application of virtual reality in rehabilitation. In: Southeastcon’94. Creative technology transfer-a global affair., Proceedings of the 1994 IEEE, pp 4–6. IEEE, 1994

    Google Scholar 

  • Parette P, Scherer M (2004) Assistive technology use and stigma. Educ Train Dev Disabil:217–226

    Google Scholar 

  • Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME (1988) Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331(6157):585

    Article  CAS  Google Scholar 

  • Scherer MJ (2002) Assistive technology: matching device and consumer for successful rehabilitation. American Psychological Association, Washington, DC

    Book  Google Scholar 

  • Schultheis MT, Rizzo AA (2001) The application of virtual reality technology in rehabilitation. Rehabil Psychol 46(3):296

    Article  Google Scholar 

  • Shenton ME, Dickey CC, Frumin M, McCarley RW (2001) A review of MRI findings in schizophrenia. Schizophr Res 49(1–2):1–52

    Article  CAS  Google Scholar 

  • Vardi Y, Shepp LA, Kaufman L (1985) A statistical model for positron emission tomography. J Am Stat Assoc 80(389):8–20

    Article  Google Scholar 

  • Wilson PN, Foreman N, Stanton D (1997) Virtual reality, disability and rehabilitation. Disabil Rehabil 19(6):213–220

    Article  CAS  Google Scholar 

  • Woods RP, Mazziotta JC, R. Cherry a S (1993) MRI-PET registration with automated algorithm. J Comput Assist Tomogr 17:536–536

    Article  CAS  Google Scholar 

  • Zampolini M, Todeschini E, Guitart Bernabeu M, Hermens H, Ilsbroukx S, Macellari V, Magni R et al (2008) Tele-rehabilitation: present and future. Ann Ist Super Sanita 44(2):125–134

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Pandey, V.K., Paul, S. (2019). Overview of Medical Electronics for Physically Disabled. In: Paul, S. (eds) Biomedical Engineering and its Applications in Healthcare. Springer, Singapore. https://doi.org/10.1007/978-981-13-3705-5_4

Download citation

Publish with us

Policies and ethics