Skip to main content

Abstract

The scaffold is a three-dimensional (3D) substrate that works as a pattern for revival of the tissue. The tissue-engineered products comprise heart valves, cartilages, bones, muscle, nerves, liver, bladder, etc. The scaffold provides the necessary provision for the cells to attach, multiply, and sustain their distinguished functions. In recent years, polymeric scaffolds play a significant role in the tissue engineering application. A wide range of natural and synthetic biopolymers are being used for the fabrication of the scaffolds, which includes proteins, chitosan, polysaccharides, poly(lactic acid) (PLA), poly(glycolic acid) (PGA), poly (ε-caprolactone) (PCL), poly(lactic-co-glycolic) acid (PLGA), etc. In addition bioactive glass and ceramic particles are reinforced with biopolymers and are used in the form of biocomposites for fabricating scaffolds structures. The reinforced biopolymers are extensively used in the development of scaffolds, due to incredible properties such as mechanical strength, regulated pore size, biodegradability, biocompatibility, and renewability. The fabricating materials are opted based on the functionality of the scaffolds, i.e., either synthetic or biologic, in other way degradable or nondegradable. The scaffolds are also distinguished based on the specific period of performance; commonly they are classified as short-term and long-term scaffolds. They are either injectable or implantable; usually the short-term scaffolds are injected and are biodegradable, whereas the long-term scaffolds are implanted and may be degradable or nondegradable. Various fabrication techniques were being adapted by the researchers to develop the scaffolds, which includes solvent casting, particulate leaching, phase separation, electrospinning, gas foaming, freeze-drying, and rapid prototyping. The selection of the materials and manufacturing methodologies are critically important for tissue engineering in designing the artificially made extracellular matrices (scaffolds), which can provide the support for three-dimensional tissue formation. Furthermore, various post-process surface modification methods are performed on the scaffolds to improve their functional performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari U, Rijal NP, Khanal S, Pai D, Sankar J, Bhattarai N (2016) Magnesium incorporated chitosan based scaffolds for tissue engineering applications. Bioactive Mater 1(2):132–139

    Article  Google Scholar 

  • Ahmed S, Ikram S (2016) Chitosan based scaffolds and their applications in wound healing. Achiev Life Sci 10(1):27–37

    Google Scholar 

  • Albannaa RF, Kirkham J, Burke J, Liu C, Yang X (2016, October) 3D-printed PLA scaffolds for bone tissue regeneration: effect of scaffold structure on attachment and growth of human dental pulp stromal cells (HDPSCS). In Orthopaedic Proceedings (Vol. 98, No. SUPP_16, 10). The British Editorial Society of Bone & Joint Surgery

    Google Scholar 

  • Azimi B, Nourpanah P, Rabiee M, Arbab S (2014) Poly (ε-caprolactone) fiber: an overview. J Eng Fibers Fabr 9(3):74

    Google Scholar 

  • Barbetta A, Barigelli E, Dentini M (2009) Porous alginate hydrogels: synthetic methods for tailoring the porous texture. Biomacromolecules 10(8):2328–2337

    Article  CAS  PubMed  Google Scholar 

  • Benicewicz BC, Hopper PK (1991) Polymers for absorbable surgical sutures—Part II. J Bioact Compat Polym 6(1):64–94

    Article  CAS  Google Scholar 

  • Bhattarai N, Zhang M (2007) Controlled synthesis and structural stability of alginate-based nanofibers. Nanotechnology 18(45):455601

    Article  CAS  Google Scholar 

  • Billström GH, Blom AW, Larsson S, Beswick AD (2013) Application of scaffolds for bone regeneration strategies: current trends and future directions. Injury 44:S28–S33

    Article  PubMed  Google Scholar 

  • Blaker JJ, Knowles JC, Day RM (2008) Novel fabrication techniques to produce microspheres by thermally induced phase separation for tissue engineering and drug delivery. Actabiomaterialia 4(2):264–272

    CAS  Google Scholar 

  • Boccaccini AR, Notingher I, Maquet V, Jérôme R (2003) Bioresorbable and bioactive composite materials based on polylactide foams filled with and coated by Bioglass® particles for tissue engineering applications. J Mater Sci Mater Med 14(5):443–450

    Article  CAS  PubMed  Google Scholar 

  • Burgeson RE, Nimni ME (1992) Collagen types. Molecular structure and tissue distribution. Clin Orthopae Relat Res 282:250–272

    Google Scholar 

  • Cai Q, Yang J, Bei J, Wang S (2002) A novel porous cells scaffold made of polylactide–dextran blend by combining phase-separation and particle-leaching techniques. Biomaterials 23(23):4483–4492

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Zhang L, Zheng H, Wang Z (2010) Hydroxyapatite nanocrystals for biomedical applications. J Phys Chem C 114(43):18352–18357

    Article  CAS  Google Scholar 

  • Chaikof EL, Matthew H, Kohn J, Mikos AG, Prestwich GD, Yip CM (2002) Biomaterials and scaffolds in reparative medicine. Ann N Y Acad Sci 961(1):96–105

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekaran AR, Venugopal J, Sundarrajan S, Ramakrishna S (2011) Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration. Biomed Mater 6(1):015001

    Article  PubMed  CAS  Google Scholar 

  • Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26(33):6565–6578

    Article  CAS  PubMed  Google Scholar 

  • Chevallay B, Herbage D (2000) Collagen-based biomaterials as 3D scaffold for cell cultures: applications for tissue engineering and gene therapy. Med Biol Eng Comput 38(2):211–218

    Article  CAS  PubMed  Google Scholar 

  • Chong EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, Lim CT (2007) Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Actabiomaterialia 3(3):321–330

    CAS  Google Scholar 

  • Choong C, Triffitt JT, Cui ZF (2004) Polycaprolactone scaffolds for bone tissue engineering: effects of a calcium phosphate coating layer on osteogenic cells. Food Bioprod Process 82(2):117–125

    Article  CAS  Google Scholar 

  • Choudhury M, Mohanty S, Nayak S (2015) Effect of different solvents in solvent casting of porous PLA scaffolds—In biomedical and tissue engineering applications. J Biomater Tissue Eng 5(1):1–9

    Article  Google Scholar 

  • Chung TW, Lo HY, Chou TH, Chen JH, Wang SS (2017) Promoting cardiomyogenesis of hBMSC with a forming self-assembly hBMSC Microtissues/HA-GRGD/SF-PCL cardiac patch is mediated by the synergistic functions of HA-GRGD. Macromol Biosci 17(3):1600173

    Article  CAS  Google Scholar 

  • Conoscenti, G. (2017). PLLA-based scaffolds for osteochondral tissue regeneration via thermally induced phase separation technique.

    Google Scholar 

  • Dai W, Kawazoe N, Lin X, Dong J, Chen G (2010) The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering. Biomaterials 31(8):2141–2152

    Article  CAS  PubMed  Google Scholar 

  • Davies OR, Lewis AL, Whitaker MJ, Tai H, Shakesheff KM, Howdle SM (2008) Applications of supercritical CO2 in the fabrication of polymer systems for drug delivery and tissue engineering. Adv Drug Deliv Rev 60(3):373–387

    Article  CAS  PubMed  Google Scholar 

  • Davis SS, Illum L, Stolnik S (1996) Polymers in drug delivery. Curr Opin Colloid Interface Sci 1(5):660–666

    Article  CAS  Google Scholar 

  • De Souza RFB, de Souza FCB, Rodrigues C, Drouin B, Popat KC, Mantovani D, Moraes ÂM (2019) Mechanically-enhanced polysaccharide-based scaffolds for tissue engineering of soft tissues. Mater Sci Eng C 94:364–375

    Article  CAS  Google Scholar 

  • Dehghani F, Annabi N (2011) Engineering porous scaffolds using gas-based techniques. Curr Opin Biotechnol 22(5):661–666

    Article  CAS  PubMed  Google Scholar 

  • Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011

    Google Scholar 

  • Do Cha H, Hong JM, Kang TY, Jung JW, Ha DH, Cho DW (2012) Effects of micro-patterns in three-dimensional scaffolds for tissue engineering applications. J Micromech Microeng 22(12):125002

    Article  Google Scholar 

  • Do AV, Khorsand B, Geary SM, Salem AK (2015) 3D printing of scaffolds for tissue regeneration applications. Adv Healthc Mater 4(12):1742–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domingos M, Dinucci D, Cometa S, Alderighi M, Bártolo PJ, Chiellini F (2009) Polycaprolactone scaffolds fabricated via bioextrusion for tissue engineering applications. Int J Biomater 2009

    Google Scholar 

  • Dong C, Lv Y (2016) Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers 8(2):42

    Article  CAS  PubMed Central  Google Scholar 

  • Ehrenfreund-Kleinman T, Domb AJ, Golenser J (2003) Polysaccharide scaffolds prepared by crosslinking of polysaccharides with chitosan or proteins for cell growth. J Bioact Compat Polym 18(5):323–338

    Article  CAS  Google Scholar 

  • Fuchs JR, Nasseri BA, Vacanti JP (2001) Tissue engineering: a 21st century solution to surgical reconstruction. Ann Thorac Surg 72(2):577–591

    Article  CAS  PubMed  Google Scholar 

  • Garg K, Bowlin GL (2011) Electrospinning jets and nanofibrous structures. Biomicrofluidics 5(1):013403

    Article  PubMed Central  CAS  Google Scholar 

  • Ghaleh H, Abbasi F, Alizadeh M, Khoshfetrat AB (2015) Mimicking the quasi-random assembly of protein fibers in the dermis by freeze-drying method. Mater Sci Eng C 49:807–815

    Article  CAS  Google Scholar 

  • Ghalia MA, Dahman Y (n.d.) Synthesis and characterization of Green Poly (lactic Acid)-Based Biomaterial. CBS 2015, 32nd Annual Meeting of the Canadian Biomaterials Society

    Google Scholar 

  • Ghassemi T, Saghatolslami N, Matin MM, Gheshlaghi R, Moradi A (2017) CNT-decellularized cartilage hybrids for tissue engineering applications. Biomed Mater 12(6):065008

    Article  PubMed  Google Scholar 

  • Goddard JM, Hotchkiss JH (2007) Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci 32(7):698–725

    Article  CAS  Google Scholar 

  • Gómez-Pachón EY, Vera-Graziano R, Campos RM (2014) Structure of poly (lactic-acid) PLA nanofibers scaffolds prepared by electrospinning. IOP Conf Ser Mater Sci Eng 59:012003

    Article  CAS  Google Scholar 

  • Grande D, Ramier J, Versace DL, Renard E, Langlois V (2017) Design of functionalized biodegradable PHA-based electrospun scaffolds meant for tissue engineering applications. New Biotechnol 37:129–137

    Article  CAS  Google Scholar 

  • Gregor A, Filová E, Novák M, Kronek J, Chlup H, Buzgo M, Blahnová V, Lukášová V, Bartoš M, Nečas A, Hošek J (2017) Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer. J Biol Eng 11(1):31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grémare A, Guduric V, Bareille R, Heroguez V, Latour S, L’heureux N, Fricain JC, Catros S, Le Nihouannen D (2018) Characterization of printed PLA scaffolds for bone tissue engineering. J Biomed Mater Res A 106(4):887–894

    Article  PubMed  CAS  Google Scholar 

  • Guarino V, Gentile G, Sorrentino L, Ambrosio L (2002) Polycaprolactone: synthesis, properties, and applications. Enc Polym Sci Technol:1–36

    Google Scholar 

  • Guarino V, Causa F, Ambrosio L (2007) Bioactive scaffolds for bone and ligament tissue. Expert Rev Med Devices 4(3):405–418

    Article  CAS  PubMed  Google Scholar 

  • Haugh MG, Murphy CM, McKiernan RC, Altenbuchner C, O’Brien FJ (2011) Crosslinking and mechanical properties significantly influence cell attachment, proliferation, and migration within collagen glycosaminoglycan scaffolds. Tissue Eng A 17(9-10):1201–1208

    Article  CAS  Google Scholar 

  • Hayashi T (1994) Biodegradable polymers for biomedical uses. Prog Polym Sci 19(4):663–702

    Article  CAS  Google Scholar 

  • He L, Zhang Y, Zeng X, Quan D, Liao S, Zeng Y, Ramakrishna S (2009) Fabrication and characterization of poly (l-lactic acid) 3D nanofibrous scaffolds with controlled architecture by liquid–liquid phase separation from a ternary polymer–solvent system. Polymer 50(16):4128–4138

    Article  CAS  Google Scholar 

  • Holy CE, Shoichet MS, Davies JE (2000) Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: Investigating initial cell-seeding density and culture period. J Biomed Mater Res A Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Kor Soc Biomater 51(3):376–382

    CAS  Google Scholar 

  • Hoque ME, Chuan YL, Pashby I (2012) Extrusion based rapid prototyping technique: an advanced platform for tissue engineering scaffold fabrication. Biopolymers 97(2):83–93

    Article  CAS  PubMed  Google Scholar 

  • Hua FJ, Kim GE, Lee JD, Son YK, Lee DS (2002) Macroporous poly (L-lactide) scaffold 1. Preparation of a macroporous scaffold by liquid–liquid phase separation of a PLLA–dioxane–water system. J Biomed Mater Res A Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Kor Soc Biomater 63(2):161–167

    CAS  Google Scholar 

  • Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    Article  CAS  Google Scholar 

  • Huang YX, Ren J, Chen C, Ren TB, Zhou XY (2008) Preparation and properties of poly (lactide-co-glycolide)(PLGA)/nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. J Biomater Appl 22(5):409–432

    Article  CAS  PubMed  Google Scholar 

  • Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. In: The biomaterials: silver jubilee compendium. Elsevier Science, New York, pp 175–189

    Chapter  Google Scholar 

  • Hutmacher DW, Cool S (2007) Concepts of scaffold-based tissue engineering—the rationale to use solid free-form fabrication techniques. J Cell Mol Med 11(4):654–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janmohammadi M, Nourbakhsh MS (2018) Electrospun polycaprolactone scaffolds for tissue engineering: a review. Int J Polym Mater Polym Biomater:1–13

    Google Scholar 

  • Jeewandara T, Waterhouse A, Wise S, Yin Y, Bilek M, Weiss A, Ng M (2013) Plasma based biofunctionalisation of cardiovascular stents. Heart Lung Circ 22:S46

    Article  Google Scholar 

  • Jordan AM, Viswanath V, Kim SE, Pokorski JK, Korley LT (2016) Processing and surface modification of polymer nanofibers for biological scaffolds: a review. J Mater Chem B 4(36):5958–5974

    Article  CAS  PubMed  Google Scholar 

  • Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491

    Article  CAS  PubMed  Google Scholar 

  • Karakaş H (2015) Electrospinning of Nanofibers and their applications. Istanbul Technical University, Textile Technologies and Design Faculty, Istanbul

    Google Scholar 

  • Katti DS, Vasita R, Shanmugam K (2008) Improved biomaterials for tissue engineering applications: surface modification of polymers. Curr Top Med Chem 8(4):341–353

    Article  Google Scholar 

  • Kim W, Jung J (2016) Polymer brush: a promising grafting approach to scaffolds for tissue engineering. BMB Rep 49(12):655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SS, Park MS, Jeon O, Choi CY, Kim BS (2006) Poly (lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 27(8):1399–1409

    Article  CAS  PubMed  Google Scholar 

  • Kohane DS, Langer R (2010) Biocompatibility and drug delivery systems. Chem Sci 1(4):441–446

    Article  CAS  Google Scholar 

  • Kothapalli CR, Shaw MT, Wei M (2005) Biodegradable HA-PLA 3-D porous scaffolds: effect of nano-sized filler content on scaffold properties. Actabiomaterialia 1(6):653–662

    Google Scholar 

  • Kumar P (2018) Nano-TiO2 doped chitosan scaffold for the bone tissue engineering applications. Int J Biomater 2018

    Google Scholar 

  • Lam CXF, Mo XM, Teoh SH, Hutmacher DW (2002) Scaffold development using 3D printing with a starch-based polymer. Mater Sci Eng C 20(1-2):49–56

    Article  Google Scholar 

  • Lee G, Barlow JW (1993, August) Selective laser sintering of bioceramic materials for implants. In Proceedings of the solid freeform fabrication symposium, Austin, TX, pp. 376–380

    Google Scholar 

  • Lee SH, Shin H (2007) Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev 59(4-5):339–359

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Kim BS, Kim SH, Choi SW, Jeong SI, Kwon IK, Kang SW, Nikolovski J, Mooney DJ, Han YK, Kim YH (2003) Elastic biodegradable poly (glycolide-co-caprolactone) scaffold for tissue engineering. J Biomed Mater Res A Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Kor Soc Biomater 66(1):29–37

    Google Scholar 

  • Levengood SKL, Zhang M (2014) Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B 2(21):3161–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li WJ, Tuan RS (2009) Fabrication and application of nanofibrous scaffolds in tissue engineering. Curr Protoc Cell Biol 42(1):25–22

    Article  Google Scholar 

  • Li C, Vepari C, Jin HJ, Kim HJ, Kaplan DL (2006) Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27(16):3115–3124

    Article  CAS  PubMed  Google Scholar 

  • Liang D, Hsiao BS, Chu B (2007) Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev 59(14):1392–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao CJ, Chen CF, Chen JH, Chiang SF, Lin YJ, Chang KY (2002) Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method. J Biomed Mater Res A Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Kor Soc Biomater 59(4):676–681

    CAS  Google Scholar 

  • Liapis AI, Bruttini R (1994) A theory for the primary and secondary drying stages of the freeze-drying of pharmaceutical crystalline and amorphous solutes: comparison between experimental data and theory. Sep Technol 4(3):144–155

    Article  CAS  Google Scholar 

  • Lim J, You M, Li J, Li Z (2017) Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds. Mater Sci Eng C 79:917–929

    Article  CAS  Google Scholar 

  • Lin Y, Wang L, Zhang P, Wang X, Chen X, Jing X, Su Z (2006) Surface modification of poly (L-lactic acid) to improve its cytocompatibility via assembly of polyelectrolytes and gelatin. Acta Biomater 2(2):155–164

    Article  PubMed  Google Scholar 

  • Liu H, Ding X, Zhou G, Li P, Wei X, Fan Y (2013) Electrospinning of nanofibers for tissue engineering applications. J Nanomater 2013:3

    Google Scholar 

  • Lord MS, Foss M, Besenbacher F (2010) Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today 5(1):66–78

    Article  CAS  Google Scholar 

  • Lu Q, Zhang X, Hu X, Kaplan DL (2010) Green process to prepare silk fibroin/gelatin biomaterial scaffolds. Macromol Biosci 10(3):289–298

    Article  CAS  PubMed  Google Scholar 

  • Lu T, Li Y, Chen T (2013) Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int J Nanomedicine 8:337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma PX, Schloo B, Mooney D, Langer R (1995) Development of biomechanical properties and morphogenesis of in vitro tissue engineered cartilage. J Biomed Mater Res 29(12):1587–1595

    Article  CAS  PubMed  Google Scholar 

  • Mahjoubi H, Kinsella JM, Murshed M, Cerruti M (2014) Surface modification of poly (D, L-lactic acid) scaffolds for orthopedic applications: a biocompatible, nondestructive route via diazonium chemistry. ACS Appl Mater Interfaces 6(13):9975–9987

    Article  CAS  PubMed  Google Scholar 

  • Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3(3):1377–1397

    Article  CAS  PubMed  Google Scholar 

  • Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS, Neves NM (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4(17):999–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maquet V, Boccaccini AR, Pravata L, Notingher I, Jérôme R (2004) Porous poly (α-hydroxyacid)/Bioglass® composite scaffolds for bone tissue engineering. I: preparation and in vitro characterisation. Biomaterials 25(18):4185–4194

    Article  CAS  PubMed  Google Scholar 

  • Meinel L, Karageorgiou V, Hofmann S, Fajardo R, Snyder B, Li C, Kaplan DL (2004) Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds. J Biomed Mater Res A Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Kor Soc Biomater 71(1):25–34

    Google Scholar 

  • Meng D, Erol M, Boccaccini AR (2010) Processing technologies for 3D nanostructured tissue engineering scaffolds. Adv Eng Mater 12(9):B467–B487

    Article  CAS  Google Scholar 

  • Mikos AG, Temenoff JS (2000) Formation of highly porous biodegradable scaffolds for tissue engineering. Electron J Biotechnol 3(2):23–24

    Article  Google Scholar 

  • Mitra J, Tripathi G, Sharma A, Basu B (2013) Scaffolds for bone tissue engineering: role of surface patterning on osteoblast response. RSC Adv 3(28):11073–11094

    Article  CAS  Google Scholar 

  • Mizuno S, Glowacki J (1996) Three-dimensional composite of demineralized bone powder and collagen for in vitro analysis of chondroinduction of human dermal fibroblasts. Biomaterials 17(18):1819–1825

    Article  CAS  PubMed  Google Scholar 

  • Montjovent MO, Mathieu L, Hinz B, Applegate LL, Bourban PE, Zambelli PY, Pioletti DP (2005) Biocompatibility of bioresorbable poly (L-lactic acid) composite scaffolds obtained by supercritical gas foaming with human fetal bone cells. Tissue Eng 11(11-12):1640–1649

    Article  CAS  PubMed  Google Scholar 

  • Nam YS, Park TG (1999a) Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res A Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Kor Soc Biomater 47(1):8–17

    CAS  Google Scholar 

  • Nam YS, Park TG (1999b) Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials 20(19):1783–1790

    Article  CAS  PubMed  Google Scholar 

  • Nejati E, Mirzadeh H, Zandi M (2008) Synthesis and characterization of nano-hydroxyapatite rods/poly (l-lactide acid) composite scaffolds for bone tissue engineering. Compos A: Appl Sci Manuf 39(10):1589–1596

    Article  CAS  Google Scholar 

  • Nettles DL, Vail TP, Morgan MT, Grinstaff MW, Setton LA (2004) Photocrosslinkable hyaluronan as a scaffold for articular cartilage repair. Ann Biomed Eng 32(3):391–397

    Article  PubMed  Google Scholar 

  • Nigam R, Mahanta B (2014) An overview of various biomimetic scaffolds: Challenges and applications in tissue engineering. J Tissue Sci Eng 5(2):1

    Google Scholar 

  • O’Brien FJ, Harley BA, Yannas IV, Gibson LJ (2005) The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 26(4):433–441

    Article  PubMed  CAS  Google Scholar 

  • O’brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95

    Article  CAS  Google Scholar 

  • Oh SH, Kang SG, Kim ES, Cho SH, Lee JH (2003) Fabrication and characterization of hydrophilic poly (lactic-co-glycolic acid)/poly (vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials 24(22):4011–4021

    Article  CAS  PubMed  Google Scholar 

  • Okamoto M, John B (2013) Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog Polym Sci 38(10-11):1487–1503

    Article  CAS  Google Scholar 

  • Partee B, Hollister SJ, Das S (2006) Selective laser sintering process optimization for layered manufacturing of CAPA® 6501 polycaprolactone bone tissue engineering scaffolds. J Manuf Sci Eng 128(2):531–540

    Article  Google Scholar 

  • Pavia FC, La Carrubba V, Piccarolo S, Brucato V (2008) Polymeric scaffolds prepared via thermally induced phase separation: tuning of structure and morphology. J Biomed Mater Res A Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Kor Soc Biomater 86(2):459–466

    Google Scholar 

  • Pawelec KM, Husmann A, Best SM, Cameron RE (2014) Understanding anisotropy and architecture in ice-templated biopolymer scaffolds. Mater Sci Eng C 37:141–147

    Article  CAS  Google Scholar 

  • Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M, Guillemin G (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18(9):959

    Article  CAS  PubMed  Google Scholar 

  • Pikal MJ (1990) Freeze-drying of proteins. Part II: Formulation selection. Bio Pharm 3(9):26–30

    CAS  Google Scholar 

  • Prabhakaran MP, Venugopal J, Chan CK, Ramakrishna S (2008) Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering. Nanotechnology 19(45):455102

    Article  PubMed  CAS  Google Scholar 

  • Prasad A, Sankar MR, Katiyar V (2017) State of art on solvent casting particulate leaching method for orthopedic scaffolds fabrication. Mater Today Proc 4(2):898–907

    Article  Google Scholar 

  • Raza ZA, Riaz S, Banat IM (2018) Polyhydroxyalkanoates: Properties and chemical modification approaches for their functionalization. Biotechnol Prog 34(1):29–41

    Article  CAS  PubMed  Google Scholar 

  • Reed AM, Gilding DK (1981) Biodegradable polymers for use in surgery—poly (glycolic)/poly (lactic acid) homo and copolymers: 2. In vitro degradation. Polymer 22(4):494–498

    Article  CAS  Google Scholar 

  • Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431

    Article  CAS  PubMed  Google Scholar 

  • Rho KS, Jeong L, Lee G, Seo BM, Park YJ, Hong SD, Min BM (2006) Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27(8):1452–1461

    Article  CAS  PubMed  Google Scholar 

  • Sachlos E, Czernuszka JT (2003) Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 5(29):39–40

    Google Scholar 

  • Safinia L, Datan N, Höhse M, Mantalaris A, Bismarck A (2005) Towards a methodology for the effective surface modification of porous polymer scaffolds. Biomaterials 26(36):7537–7547

    Article  CAS  PubMed  Google Scholar 

  • Salmoria GV, Klauss P, Paggi RA, Kanis LA, Lago A (2009) Structure and mechanical properties of cellulose based scaffolds fabricated by selective laser sintering. Polym Test 28(6):648–652

    Article  CAS  Google Scholar 

  • Sato T, Chen G, Ushida T, Ishii T, Ochiai N, Tateishi T, Tanaka J (2004) Evaluation of PLLA–collagen hybrid sponge as a scaffold for cartilage tissue engineering. Mater Sci Eng C 24(3):365–372

    Article  CAS  Google Scholar 

  • Schugens C, Maquet V, Grandfils C, Jérôme R, Teyssie P (1996) Polylactide macroporous biodegradable implants for cell transplantation. II Preparation of polylactide foams by liquid-liquid phase separation. J Biomed Mater Res A Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Kor Soc Biomater 30(4):449–461

    CAS  Google Scholar 

  • Seol YJ, Lee JY, Park YJ, Lee YM, Rhyu IC, Lee SJ, Han SB, Chung CP (2004) Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnol Lett 26(13):1037–1041

    Article  CAS  PubMed  Google Scholar 

  • Serra T, Planell JA, Navarro M (2013) High-resolution PLA-based composite scaffolds via 3-D printing technology. Actabiomaterialia 9(3):5521–5530

    CAS  Google Scholar 

  • Shanmugasundaram N, Ravichandran P, Reddy PN, Ramamurty N, Pal S, Rao KP (2001) Collagen–chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells. Biomaterials 22(14):1943–1951

    Article  CAS  PubMed  Google Scholar 

  • Sheridan MH, Shea LD, Peters MC, Mooney DJ (2000) Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J Control Release 64(1-3):91–102

    Article  CAS  PubMed  Google Scholar 

  • Slabko VV, Volova TG, Krasnov PO, Kuzubov AA, Shishatskaya EI (2010) Surface modification of bioresorbable polymer scaffolds by laser treatment. Biophysics 55(2):234–238

    Article  Google Scholar 

  • Smiya Mushtaq, Muhammad Irfan Majeed (2017) Biopolymers for medical applications, Time Technology

    Google Scholar 

  • Subia B, Kundu J, Kundu SC (2010) Biomaterial scaffold fabrication techniques for potential tissue engineering applications. In: Tissue engineering. InTech, London

    Google Scholar 

  • Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26(4):419–431

    Article  CAS  PubMed  Google Scholar 

  • Swetha M, Sahithi K, Moorthi A, Srinivasan N, Ramasamy K, Selvamurugan N (2010) Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 47(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Thakur RA, Florek CA, Kohn J, Michniak BB (2008) Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing. Int J Pharm 364(1):87–93

    Article  CAS  PubMed  Google Scholar 

  • Tsivintzelis I, Pavlidou E, Panayiotou C (2007) Porous scaffolds prepared by phase inversion using supercritical CO2 as antisolvent: I. Poly (l-lactic acid). J Supercrit Fluids 40(2):317–322

    Article  CAS  Google Scholar 

  • Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, Shu W (2018) 3D bioactive composite scaffolds for bone tissue engineering. Bioactive materials 3(3):278–314

    Article  PubMed  Google Scholar 

  • Uyama Y, Kato K, Ikada Y (1998) Surface modification of polymers by grafting. In: Grafting/characterization techniques/kinetic modeling. Springer, Berlin/Heidelberg, pp 1–39

    Google Scholar 

  • Venkatesan J, Kim SK (2010) Chitosan composites for bone tissue engineering—an overview. Mar Drugs 8(8):2252–2266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vozzi G, Previti A, De Rossi D, Ahluwalia ARTI (2002) Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering. Tissue Eng 8(6):1089–1098

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Shor L, Darling A, Khalil S, Sun W, Güçeri S, Lau A (2004) Precision extruding deposition and characterization of cellular poly-ϵ-caprolactone tissue scaffolds. Rapid Prototyp J 10(1):42–49

    Article  Google Scholar 

  • Wang W, Caetano G, Ambler WS, Blaker JJ, Frade MA, Mandal P, Bártolo P (2016) Enhancing the hydrophilicity and cell attachment of 3D printed PCL/graphene scaffolds for bone tissue engineering. Materials 9(12):992

    Article  PubMed Central  CAS  Google Scholar 

  • Wei G, Ma PX (2004) Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25(19):4749–4757

    Article  CAS  PubMed  Google Scholar 

  • Whang K, Thomas CH, Healy KE, Nuber G (1995) A novel method to fabricate bioabsorbable scaffolds. Polymer 36(4):837–842

    Article  CAS  Google Scholar 

  • Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das S (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23):4817–4827

    Article  CAS  PubMed  Google Scholar 

  • Wiria FE, Leong KF, Chua CK, Liu Y (2007) Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Actabiomaterialia 3(1):1–12

    CAS  Google Scholar 

  • Wolf K, Mazo I, Leung H, Engelke K, Von Andrian UH, Deryugina EI, Strongin AY, Bröcker EB, Friedl P (2003) Compensation mechanism in tumor cell migration: mesenchymal–amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160(2):267–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao L, Wang B, Yang G, Gauthier M (2012) Poly (lactic acid)-based biomaterials: synthesis, modification and applications. In: Biomedical science, engineering and technology. InTech, London

    Google Scholar 

  • Yadav P, Yadav H, Shah VG, Shah G, Dhaka G (2015) Biomedical biopolymers, their origin and evolution in biomedical sciences: A systematic review. J Clin Diagn Res 9(9):ZE21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7(6):679–689

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Shi G, Bei J, Wang S, Cao Y, Shang Q, Wang W (2002) Fabrication and surface modification of macroporous poly (L-lactic acid) and poly (L-lactic-co-glycolic acid)(70/30) cell scaffolds for human skin fibroblast cell culture. J Biomed Mater Res A Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Kor Soc Biomater 62(3):438–446

    CAS  Google Scholar 

  • Yang XB, Webb D, Blaker J, Boccaccini AR, Maquet V, Cooper C, Oreffo RO (2006a) Evaluation of human bone marrow stromal cell growth on biodegradable polymer/Bioglass® composites. Biochem Biophys Res Commun 342(4):1098–1107

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Chen L, Shen X, Tan Z (2006b) Preparation of polycaprolactone tissue engineering scaffolds by improved solvent casting/particulate leaching method. J Macromol Sci Part B Phys 45(6):1171–1181

    Article  CAS  Google Scholar 

  • Yoon JJ, Park TG (2001) Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts. J Biomed Mater Res A Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Kor Soc Biomater 55(3):401–408

    CAS  Google Scholar 

  • Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24(12):2077–2082

    Article  CAS  PubMed  Google Scholar 

  • Yu HS, Park J, Lee HS, Park SA, Lee DW, Park K (2018) Feasibility of polycaprolactone scaffolds fabricated by three-dimensional printing for tissue engineering of Tunica Albuginea. World J Men Heal 36(1):66–72

    Article  Google Scholar 

  • Zamani Y, Mohammadi J, Amoabediny G, Visscher DO, Helder MN, Zandieh-Doulabi B, Klein-Nulend J (2018) Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly (ε-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds. Biomed Mater 14(1):015008

    Article  PubMed  Google Scholar 

  • Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23(4):1169–1185

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Ma PX (1999) Porous poly (l-lactic acid)/apatite composites created by biomimetic process. J Biomed Mater Res A Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Kor Soc Biomater 45(4):285–293

    CAS  Google Scholar 

  • Zhang Y, Huang ZM, Xu X, Lim CT, Ramakrishna S (2004) Preparation of core− shell structured PCL-r-gelatin bi-component nanofibers by coaxial electrospinning. Chem Mater 16(18):3406–3409

    Article  CAS  Google Scholar 

  • Zhang P, Hong Z, Yu T, Chen X, Jing X (2009) In vivo mineralization and osteogenesis of nanocomposite scaffold of poly (lactide-co-glycolide) and hydroxyapatite surface-grafted with poly (L-lactide). Biomaterials 30(1):58–70

    Article  PubMed  CAS  Google Scholar 

  • Zhao K, Deng Y, Chen JC, Chen GQ (2003) Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility. Biomaterials 24(6):1041–1045

    Article  CAS  PubMed  Google Scholar 

  • Zhitomirsky D, Roether JA, Boccaccini AR, Zhitomirsky I (2009) Electrophoretic deposition of bioactive glass/polymer composite coatings with and without HA nanoparticle inclusions for biomedical applications. J Mater Process Technol 209(4):1853–1860

    Article  CAS  Google Scholar 

  • Zhong SP, Zhang YZ, Lim CT (2010) Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(5):510–525

    Article  CAS  PubMed  Google Scholar 

  • Zhu XH, Lee LY, Jackson JSH, Tong YW, Wang CH (2008) Characterization of porous poly (D, L-lactic-co-glycolic acid) sponges fabricated by supercritical CO2 gas-foaming method as a scaffold for three-dimensional growth of Hep3B cells. Biotechnol Bioeng 100(5):998–1009

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Nalini Ranganathan, Mugeshwaran, A., Joseph Bensingh, R., Abdul Kader, M., Nayak, S.K. (2019). Biopolymeric Scaffolds for Tissue Engineering Application. In: Paul, S. (eds) Biomedical Engineering and its Applications in Healthcare. Springer, Singapore. https://doi.org/10.1007/978-981-13-3705-5_11

Download citation

Publish with us

Policies and ethics