Skip to main content

Poor Early Growth and Age-Associated Disease

  • Chapter
  • First Online:
Biochemistry and Cell Biology of Ageing: Part II Clinical Science

Part of the book series: Subcellular Biochemistry ((SCBI,volume 91))

Abstract

The prevalence of age-associated disease is increasing at a striking rate globally and there is evidence to suggest that the ageing process may actually begin before birth. It has been well-established that the status of both the maternal and early postnatal environments into which an individual is exposed can have huge implications for the risk of developing age-associated disease, including cardiovascular disease (CVD), type-2 diabetes (T2D) and obesity in later life. Therefore, the dissection of underlying molecular mechanisms to explain this phenomenon, known as ‘developmental programming’ is a highly investigated area of research. This book chapter will examine the epidemiological evidence and the animal models of suboptimal maternal and early postnatal environments and will discuss the progress being made in the development of safe and effective intervention strategies which ultimately could target those ‘programmed’ individuals who are known to be at-risk of age-associated disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiken CE, Ozanne SE (2014) Transgenerational developmental programming. Hum Reprod Update 20:63–75

    Article  PubMed  Google Scholar 

  • Aiken CE, Tarry-Adkins JL, Ozanne SE (2013) Suboptimal nutrition in utero causes DNA damage and accelerated aging of the female reproductive tract. FASEB J 27:3959–3965

    Article  CAS  PubMed  Google Scholar 

  • Alfaradhi MZ, Fernandez-Twinn DS, Martin-Gronert MS et al (2014) Oxidative stress and altered lipid homeostasis in the programming of offspring fatty liver by maternal obesity. Am J Physiol Regul Intergr Comp Physiol 307:R26–R34

    Article  CAS  Google Scholar 

  • Alfaradhi MZ, Kusinski LC, Fernandez-Twinn DS et al (2016) Maternal obesity in pregnancy developmentally programs adipose tissue inflammation in young, lean male mice. Endocrinology 157(11):4246–4256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakayska SL, Mucci LA, Slagbloom PE et al (2007) Telomere length predicts survival independent of genetic influences. Aging Cell 6:769–774

    Article  CAS  Google Scholar 

  • Barker DJ, Hales CN, Fall CH et al (1993) Type 2 (non-insulin dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 36:62–67

    Article  CAS  PubMed  Google Scholar 

  • Belsky DW, Caspi A, Houts R et al (2015) Quantification of biological aging in young adults. PNAS 112(30):E4104–E4110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benediktsson R, Lindsay R, Noble J et al (1993) Glucocorticoid exposure in utero: a new model for adult hypertension. Lancet 341:339–341

    Article  CAS  PubMed  Google Scholar 

  • Bianco-Miotto T, Craig JM, Gasser YP (2017) Epigenetics and DOHaD: from basics to birth and beyond. J Dev Orig Health Dis 8:513–519

    Article  CAS  PubMed  Google Scholar 

  • Bieswal F, Ahn MT, Reusens B et al (2006) The importance of catch-up growth after early malnutrition for the programming of obesity in the male rat. Obesity 14:1330–1334

    Article  CAS  PubMed  Google Scholar 

  • Blackburn EH, Greider CW, Szostak JW (2006) Telomeres and telomerase: the path from maize, tetrahymena and yeast to human cancer and aging. Nat Med 12:1133–1138

    Article  CAS  PubMed  Google Scholar 

  • Blackburn EH, Epel ES, Lin J (2015) Human telomere biology: a contributory and interactive factor in aging, disease risks and protection. Science 350(6265):1193–1198

    Article  CAS  PubMed  Google Scholar 

  • Blackmore HL, Niu Y, Fernandez-Twinn DS et al (2014) Maternal diet-induced obesity programs cardiovascular dysfunction in adult male mouse offspring independent of current body weight. Endocrinology 155:3970–3980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bol VV, Delattre AI, Reusens B et al (2009) Forced catch-up growth after fetal protein restriction alters the adipose tissue gene expression program leading to obesity in adult mice. Am J Physiol Regul Integr Comp Physiol 297:R291–R299

    Article  CAS  PubMed  Google Scholar 

  • Boney CM, Verma A, Tucker R et al (2005) Metabolic syndrome in childhood: assocations with birthweight, maternal obesity, and gestational diabetes mellitus. Paediatrics 115:e290–e296

    Article  Google Scholar 

  • Bourque SL, Gragasin FS, Quon AL et al (2013) Prenatal hypoxia causes long-term alterations in vascular endothelin-1 function in aged male, but not female, offspring. Hypertension 62:753–758

    Article  CAS  PubMed  Google Scholar 

  • Calabrese V, Cornelius C, Cuzzocrea S et al (2011) Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity. Mol Asp Med 32:279–304

    Article  CAS  Google Scholar 

  • Campisano SE, Echarte SM, Podaza E (2017) Protein malnutrition during fetal programming induces fatty liver in adult male offspring rats. J Physiol Biochem 73:275–285

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Li C, MacDonald TJ et al (2011) Emergence of insulin resistance in juvenile baboon offspring of mothers exposed to moderate maternal nutrient restriction. Am J Physiol Regul Integr Comp Physiol 301:R757–R762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleasby ME, Kelly PAT, Walker BR et al (2003) Programming of rat muscle and fat metabolism by in utero overexposure to glucocorticoids. Endocrinology 144:999–1007

    Article  CAS  PubMed  Google Scholar 

  • Corstius HB, Zimanyi MA, Maka N et al (2005) Effect of intrauterine growth restriction on the number of cardiomyocytes in rat hearts. Pediatr Res 57:796–800

    Article  CAS  PubMed  Google Scholar 

  • Crowther NJ, Cameron N, Trusler J et al (1998) Association with poor glucose tolerance and rapid postnatal growth in seven-year old children. Diabetologia 41:1163–1167

    Article  CAS  PubMed  Google Scholar 

  • Crowther NJ, Trusler J, Cameron N et al (2000) Relation between weight gain and beta-cell secretory activity and non-esterified fatty acid production in 7 year old African children: results from the Birth to Ten study. Diabetologia 43:978–985

    Article  CAS  PubMed  Google Scholar 

  • Dabelea D, Pettitt DJ, Hanson RL et al (1999) Birth weight, type 2 diabetes, and insulin resistance in Pima Indian children and adults. Diabetes Care 22:944–950

    Article  CAS  PubMed  Google Scholar 

  • Dahri S, Snoeck A, Reusens-Billen B et al (1991) Islet function in offspring of mothers on low-protein diet during lactation. Diabetes 40:115–120

    Article  CAS  PubMed  Google Scholar 

  • de Almeida Faria J, Duque-Guimaraes D, Carpenter AAM et al (2017) A post-weaning obesogenic diet exacerbates the detrimental effects of maternal obesity on offspring insulin signaling in adipose tissue. Sci Rep 7:44949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deelen J, Beekman M, Codd V et al (2014) Leukocyte telomere length associates with prospective mortality independent of immune-related parameters and known genetic markers. Int J Epidemiol 43:878–886

    Article  PubMed  PubMed Central  Google Scholar 

  • Delahaye F, Breton C, Risold PY et al (2008) Maternal perinatal undernutrition drastically reduces postnatal leptin surge and affects the development of arcuate nucleus proopiomelanocortin neurons in neonatal male rat pups. Endocrinology 149:470–475

    Article  CAS  PubMed  Google Scholar 

  • de Rooj SR, Painter RC, Phillips DI et al (2006) Impaired insulin secretion after prenatal exposure to the Dutch famine. Diabetes Care 29:1897–1901

    Article  Google Scholar 

  • de Vries A, Holmes MC, Heijnis A et al (2007) Prenatal dexamethasone exposure induces changes in nonhuman primate offspring cardiometabolic and hypothalamic-pituitary-adrenal axis function. J Clin Invest 117:1058–1067

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dodic M, Moritz K, Koukoulas I et al (2002) Programming effects of short prenatal exposure to cortisol. FASEB J 16:1017–1026

    Article  CAS  PubMed  Google Scholar 

  • Dodson RB, Miller TA, Powers K et al (2017) Intrauterine growth restriction influences vascular remodelling and stiffening in the weanling rat more than sex or diet. Am J Physiol Heart Circ Physiol 312:H250–H264

    Article  PubMed  Google Scholar 

  • Ekamper P, van Poppel F, Stein AD et al (2014) Independent and additive association of prenatal famine exposure and intermediary life conditions with adult mortality between 18–63 years. Soc Sci Med 119:232–239

    Article  CAS  PubMed  Google Scholar 

  • Entringer S, Epel ES, Kumsta R et al (2011) Stress exposure in intrauterine life is associated with shorter telomere length in young adulthood. Proc Natl Acad Sci U S A 108:E513–E518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Entringer S, Epel ES, Lin J et al (2013) Maternal psychological stress during pregnancy is associated with newborn leukocyte telomere length. Am J Obestet Gynecol 208:e1–e7

    Google Scholar 

  • Eriksson JG (2006) Early growth, and coronary heart disease and type 2 diabetes: experiences from the Helsinki Birth Cohort studies. Int J Obes 30(Suppl. 4):S18–S22

    Article  Google Scholar 

  • Eriksson JG (2016) Developmental origins of adult health and disease – from a small body size at birth to epigenetics. Ann Med 48:456–467

    Article  PubMed  Google Scholar 

  • Eriksson J, Forsen T, Tuomilehto J et al (1999) Catch-up growth in childhood and death from coronary heart disease: longitudinal study. BMJ 318:427–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson J, Forsen T, Tuomilehto J (2000) Fetal and childhood growth and hypertension in adult life. Hypertension 36:790–794

    Article  CAS  PubMed  Google Scholar 

  • Estourgie-van Burk GF, Bartels M, Hoekstra RA et al (2009) A twin study of cognitive costs of low birth weight and catch-up growth. J Pediatr 154:29–32

    Article  PubMed  Google Scholar 

  • Fall CH, Osmond C, Barker DJ et al (1995) Fetal and growth and cardiovascular risk factors for women. BMJ 310:428–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fall CHD, Stein CE, Kumaran K et al (1998) Size at birth, maternal weight and type 2 diabetes in South India. Diabet Med 15:220–227

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Twinn DS, Wayman A, Ekizoglou S et al (2005) Maternal protein restriction leads to hyperinsulinaemia and reduced insulin signaling protein expression in 21-mo old offspring. Am J Physiol Regul Integr Comp Physiol 288:R368–R373

    Article  CAS  PubMed  Google Scholar 

  • Figueroa H, Alvarado C, Cifuentes J et al (2017) Oxidative damage and nitric oxide synthase induction by surgical uteroplacental circulation in the rabbit. Prenat Diagn 37(5):453–459

    Article  CAS  PubMed  Google Scholar 

  • Gallo LA, Denton KM, Moritz KM et al (2012) Long-term alteration in maternal blood pressure and renal function after pregnancy in normal and growth-restricted rats. Hypertension 60:206–213

    Article  CAS  PubMed  Google Scholar 

  • Gambling L, Andersen HS, Czopek A et al (2004) Effect of timing of iron supplementation on maternal and neonatal growth and iron status of iron-deficit pregnant rats. J Physiol 561:195–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garafono A, Czernichow P, Breant B (1997) In utero undernutrition impairs beta cell development. Diabetologia 40:1231–1234

    Article  Google Scholar 

  • Garafono A, Czernichow P, Breant B (1998) Beta-cell mass and proliferation following late fetal and early postnatal malnutrition in the rat. Diabetologia 41:1114–1120

    Article  Google Scholar 

  • Garafono A, Czernichow P, Breant B (1999) Effect of ageing on beta cell mass and function in rats malnourished during the perinatal period. Diabetologia 42:711–718

    Article  Google Scholar 

  • Germani D, Puglianiello A, Cianfarani S (2008) Uteroplacental insufficiency down regulates insulin receptor and affects expression of key enzymes of long-chain fatty (LCFA) metabolism in skeletal muscle at birth. Cardiovasc Diabetol 7:7–14

    Article  CAS  Google Scholar 

  • Giussani DA, Camm EJ, Niu Y et al (2012) Developmental programming of cardiovascular dysfunction by prenatal hypoxia and oxidative stress. PLoS One 7:e31017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grunnet L, Vielwerth S, Vaag A et al (2007) Birth weight is nongenetically associated with glucose intolerance in elderly twins, independent of adiposity. J Intern Med 262:96–103

    Article  CAS  PubMed  Google Scholar 

  • Hales CN, Barker DJP, Clark PMS, Cox LJ, Fall C, Osmond C, Winter PD (1991) Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 303:1019–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halvorsen CP, Andolf E, Hu J et al (2006) Discordant twin growth in utero and differences in blood pressure and endothelial dysfunction at 8 years of age. J Intern Med 259:155–163

    Article  CAS  PubMed  Google Scholar 

  • Harman D (1956) Aging: A theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  CAS  PubMed  Google Scholar 

  • Hauton D, Al-Shammari A, Gaffney EA et al (2015) Maternal hypoxia decreases capillary supply and increases metabolic inefficiency leading to divergence in myocardial oxygen supply and demand. PLoS One 10:e0127424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hemachandra AH, Howards PP, Furth SL et al (2007) Birth weight, postnatal growth and risk for high blood pressure at 7 years of age: results from the Collaborative Perinatal Project. Pediatrics 119:e1264–e1270

    Article  PubMed  Google Scholar 

  • Hendrix N, Berghella V (2008) Non-placental causes of intrauterine growth restriction. Sem Perinatal 32:161–165

    Article  Google Scholar 

  • Heslehurst N, Rankin J, Wilkinson JR et al (2010) A nationally representative study of maternal obesity in England, UK: trends in incidence and demographic inequalities in 619 323 births, 1989–2007. Int J Obes 34:420–428

    Article  CAS  Google Scholar 

  • Hokke S, Puelles VG, Armitage JA et al (2016) Maternal fat feeding augments offspring nephron endowment in mice. PLoS One 11:e0161578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoppe CC, Evans RG, Bertram JF et al (2007) Effects of dietary protein restriction on nephron number in the mouse. Am J Physiol Regul Integr Comp Physiol 292:R1768–R1774

    Article  CAS  PubMed  Google Scholar 

  • Huber HF, Ford SM, Bartlett TQ et al (2015) Increased aggressive and affiliative display behavior in intrauterine growth restricted baboons. J Med Primatol 44:143–147

    Article  PubMed  PubMed Central  Google Scholar 

  • Jakoubek V, Bibova J, Herget J et al (2008) Chronic hypoxia increases fetoplacental vascular resistance and vasoconstrictor reactivity in the rat. Am J Physiol Heart Circ Physiol 294:H1638–H1644

    Article  CAS  PubMed  Google Scholar 

  • Kafka P, Vajnerova O, Hampi V (2016) Chronic hypoxia increases fetoplacental vascular resistance in rat placental perfused with blood. Bratisl Lek Listy 117:583–586

    CAS  PubMed  Google Scholar 

  • Kane AD, Herrara EA, Camm EJ (2013) Vitamin C prevents intrauterine programming of in-vivo cardiovascular dysfunction in the rat. Circ J 77:2604–2611

    Article  CAS  PubMed  Google Scholar 

  • Kim DW, Young SL, Grattan DR et al (2014) Obesity during pregnancy disrupts placental morphology, cell proliferation, and inflammation in a sex-specific manner across gestation in the mouse. Biol Reprod 90:1–11

    Article  CAS  Google Scholar 

  • Kirk SL, Samuelsson AM, Argenton M et al (2009) Maternal obesity induced by diet in rats permanently influences central processes regulating food intake in offspring. PLoS One 4:e5870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuo AH, Li C, Huber HF et al (2017) Cardiac remodelling in a baboon model of intrauterine growth restriction mimics accelerated aging. J Physiol 595:1093–1110

    Article  CAS  PubMed  Google Scholar 

  • Lane RH, Chandorkar AK, Flozak AS et al (1998) Intrauterine growth-retardation alters mitochondrial gene expression and function in fetal and juvenile rat skeletal muscle. Pediatr Res 43:563–570

    Article  CAS  PubMed  Google Scholar 

  • Lane RH, Kelley DE, Gruetzmacher EM et al (2001) Uteroplacental insufficiency alters hepatic fatty acid-metabolizing enzymes in juvenile and adult rats. Am J Phys Regul Integr Comp Phys 280:R183–R190

    CAS  Google Scholar 

  • Langley-Evans SC, Philips GJ, Jackson AA (1994) In utero exposure to maternal low protein diets induces hypertension in weanling rats, independently of maternal blood pressure changes. Clin Nutr 13:319–324

    Article  CAS  PubMed  Google Scholar 

  • Langley-Evans SC, Welham SJ, Jackson AA (1999) Fetal exposure to a maternal low protein diet impairs nephrogenesis and promotes hypertension in the rat. Life Sci 64:965–974

    Article  CAS  PubMed  Google Scholar 

  • Law CM, Shiell AW, Newsome CA et al (2002) Fetal, infant and childhood growth and adult blood pressure: a longitudinal study from birth to 22 years of age. Circulation 105:1088–1092

    Article  CAS  PubMed  Google Scholar 

  • Lee HS (2015) Impact of maternal diet on the epigenome during in utero life and the developmental programming of diseases in childhood and adulthood. Nutrients 7:9492–9507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SP, Hande P, Yeo GS et al (2017) Correlation of cord blood telomere length with birth weight. BMC Res Notes 10:469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lesage J, Blondeau B, Grino M et al (2001) Maternal undernutrition during late gestation induces fetal overexposure to glucocorticoids and intrauterine growth retardation, and disturbs the hypothalamo-pituitary adrenal axis in the newborn rat. Endocrinology 142:1692–1702

    Article  CAS  PubMed  Google Scholar 

  • Lewis RM, Petry CJ, Ozanne SE et al (2001a) Effects of maternal iron restriction in the rat on blood pressure, glucose tolerance, and serum lipids in 3-month old offspring. Metabolism 50:562–567

    Article  CAS  PubMed  Google Scholar 

  • Lewis RM, Doherty CB, James LA et al (2001b) Effects of maternal iron restriction on placental vascularization in the rat. Placenta 22:534–539

    Article  CAS  PubMed  Google Scholar 

  • Lewis RM, Forhead AJ, Petry CJ et al (2002) Long-term programming of blood pressure by maternal iron restriction in the rat. Br J Nutr 88(3):283–290

    Article  CAS  PubMed  Google Scholar 

  • Lim K, Zimanyi M, Black MJ (2006) Effect of maternal protein restriction in rats on cardiac fibrosis and capillarization in adulthood. Pediatr Res 60:83–87

    Article  PubMed  Google Scholar 

  • Lisle SJ, Lewis RM, Petry CJ et al (2003) Effect of maternal iron restriction during pregnancy on renal morphology in the adult rat offspring. Br J Nutr 90(1):33–39

    Article  CAS  PubMed  Google Scholar 

  • Lithell HO, McKeigue PM, Berglund L et al (1996) Relation of size at birth to non-insulin dependent diabetes and insulin concentrations in men aged 50–60 years. BMJ 312:406–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchetto NM, Glynn RA, Ferry ML et al (2016) Prenatal stress and newborn telomere length. Am J Obstet Gynecol 215:e1–e8

    Article  CAS  Google Scholar 

  • Mazzuca MQ, Wlodek ME, Dragomir NM et al (2010) Uteroplacental insufficiency programs regional vascular dysfunction and alters arterial stiffness in female offspring. J Physiol 588:1997–2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGillick EV, Orgeig S, Allison BJ et al (2017) Maternal chronic hypoxia increases expression of genes regulating lung liquid movement and surfactant maturation in male foetuses in late gestation. J Physiol 595:4329–4350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi J, Law C, Zhang K-L et al (2000) Effects of infant birth weight and maternal body mass index in pregnancy on components of the insulin resistance syndrome in China. Ann Intern Med 132:253–260

    Article  CAS  PubMed  Google Scholar 

  • Monrad RN, Grunnet LG, Rasmussen EL et al (2009) Age-dependent nongenetic influences of birth weight and adult body fat in insulin sensitivity in twins. J Clin Endocrinol Metab 94:2394–2399

    Article  PubMed  CAS  Google Scholar 

  • Moritz KM, Mazzuca MQ, Siebell AL et al (2009) Uteroplacental insufficiency causes a nephron deficit, modest renal insufficiency but no hypertension with ageing in female rats. J Physiol 587:2635–2646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Needham BL, Rehkopf D, Adler N et al (2015) Leukocyte telomere length and mortality in the National Health and Nutritional Examination Survey, 1999–2002. Epidemiology 26(4):528–535

    Article  PubMed  PubMed Central  Google Scholar 

  • Nyrienda MJ, Lindsay RS, Kenyon CJ et al (1998) Glucocorticoid exposure in late gestation permanently programs rat hepatic phosphoenolpyruvate carboxylase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring. J Clin Invest 101:2174–2181

    Article  Google Scholar 

  • Ozanne SE, Hales CN (2004) Lifespan: catch up growth and obesity in male mice. Nature 427:411–412

    Article  CAS  PubMed  Google Scholar 

  • Ozanne SE, Wang CL, Coleman N et al (1996) Altered muscle sensitivity in the male offspring of protein-malnourished rats. Am J Phys 271:E1128–E1134, 1996

    CAS  Google Scholar 

  • Ozanne SE, Dorling MW, Wang CL et al (2001) Impaired PI-3 kinase activation in adipocytes from early growth-restricted male rats. Am J Physiol Endocrinol Metab 280:E543–E539

    Article  Google Scholar 

  • Ozanne SE, Jensen CB, Tingey KJ et al (2005) Low birthweight is associated with specific changes in muscle insulin-signaling protein expression. Diabetologia 48:547–552

    Article  CAS  PubMed  Google Scholar 

  • Peterside IE, Selak MA, Simmons RA (2003) Impaired oxidative phosphorylation in hepatic mitochondria in growth-retarded rats. Am J Physiol Endocrinol Metab 285:E1258–E1266

    Article  CAS  PubMed  Google Scholar 

  • Petrik J, Reusens B, Arany E et al (1999) A low protein diet alters the balance of islet cell replication and apoptosis in the fetal and neonatal rat and associated with a reduced pancreatic expression of insulin-like growth factor II. Endocrinology 140:4861–4873

    Article  CAS  PubMed  Google Scholar 

  • Petry CJ, Dorling MW, Pawlak DB (2002) Diabetes in old male offspring of rat dams fed a reduced protein diet. Int J Exp Diabetes Res 2(2):139–143

    Article  Google Scholar 

  • Pettitt DJ, Jovanovic L (2001) Birth weight as a predictor of type 2 diabetes mellitus: The U-shaped curve. Curr Diab Rep 1:78–81

    Article  CAS  PubMed  Google Scholar 

  • Poulsen P, Vaag AA, Kyvik KO et al (1996) Low birth weight is associated with NIDDM in discordant monozygotic and dizygotic twin pairs. Diabetologia 40(4):439–446

    Article  Google Scholar 

  • Poulsen P, Kyvik KO, Vaag A et al (1999) Heritability of type II (non-insulin dependent) diabetes mellitus and abnormal glucose tolerance – a population based twin study. Diabetologia 42:139–145

    Article  CAS  PubMed  Google Scholar 

  • Poulsen P, Levin K, Beck-Nielsen H et al (2002) Age-dependent impact of zygosity and birth weight on insulin secretion and insulin action on twins. Diabetologia 45:1645–1659

    Google Scholar 

  • Ravelli AC, van der Meulen HJP, Michels RPJ et al (1998) Glucose intolerance in adults after prenatal exposure to famine. Lancet 351:173–177

    Article  CAS  PubMed  Google Scholar 

  • Reynolds RM, Allan KM, Raja EA et al (2013) Maternal obesity during pregnancy and premature mortality from cardiovascular event in adult offspring: follow up of 1 323 275 person years. BMJ 347:f4539

    Article  PubMed  PubMed Central  Google Scholar 

  • Richter T, von Zglincki T (2007) A continuous correlation between oxidative stress and telomere length in fibroblasts. Exp Gerontol 42(11):1039–1042

    Article  CAS  PubMed  Google Scholar 

  • Richter HG, Hansell JA, Raut S et al (2009) Melatonin improves placental efficiency and birth weight and increases placental expression of antioxidant enzymes in undernourished pregnancy. J Pineal Res 46:357–364

    Article  PubMed  CAS  Google Scholar 

  • Richter HG, Camm EJ, Modi BN et al (2012) Ascorbate prevents placental oxidative stress and enhances birth weight in hypoxic pregnancy rats. J Physiol 590:1377–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roseboom T, de Rooj S, Painter R (2006) The Dutch famine and its long-term consequences for adult health. Early Hum Dev 82:485–491

    Article  PubMed  Google Scholar 

  • Samuelsson AM, Matthews PA, Argenton M et al (2008) Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance. Hypertension 51:383–392

    Article  CAS  PubMed  Google Scholar 

  • Scholl TO (2011) Maternal iron status: Relation to fetal growth, length of gestation and the neonate’s iron endowment. Nutr Rev 69(suppl 1):S23–S29

    Article  PubMed  Google Scholar 

  • Selak MA, Storey BT, Peterside I et al (2003) Impaired oxidative phosphorylation in skeletal muscle of intrauterine growth-retarded rats. Am J Physiol Endocrinol Metab 285:E130–E137

    Article  CAS  PubMed  Google Scholar 

  • Shah A, Reyes LM, Morton JS et al (2016) Effect of resveratrol on metabolic and cardiovascular function in male and female adult offspring exposed to prenatal hypoxia and a high-fat diet. J Physiol 594:1465–1482

    Article  CAS  PubMed  Google Scholar 

  • Shah A, Quon A, Morton JS et al (2017) Postnatal resveratrol supplementation improves cardiovascular function in male and female intrauterine growth restricted offspring. Physiol Rep 5(2):e13109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharpless N, DePhino RA (2004) Telomeres, stem cells, and cancer. J Clin Invest 113:160–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shelley P, Martin-Gronert MS, Rowlerson A (2009) Altered skeletal muscle insulin signaling and mitochondrial complex II-III linked activity in adult offspring of obese mice. Am J Physiol Regul Integr Comp Physiol 297:R675–R681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmons RA, Templeton LG, Gertz SJ (2001) Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes 50:2279–2286

    Article  CAS  PubMed  Google Scholar 

  • Singhal A, Cole TJ, Lucas A (2001) Early nutrition in preterm infants and later blood pressure: two cohorts after randomised trials. Lancet 357:413–419

    Article  CAS  PubMed  Google Scholar 

  • Singhal A, Farooqi IS, O’Rahilly S et al (2002) Early nutrition and leptin concentrations in later life. Am J Clin Nutr 75:993–999

    Article  CAS  PubMed  Google Scholar 

  • Singhal A, Cole TJ, Fewtrell M et al (2004) Breastmilk feeding and lipoprotein profile in adolescents born preterm: follow up of a prospective randomised trial. Lancet 363:1571–1578

    Article  CAS  PubMed  Google Scholar 

  • Singhal A, Kennedy K, Lanigan J et al (2010) Nutrition in infancy and long-term risk of obesity: evidence from 2 randomized control trials. Am J Clin Nutr 92:1133–1144

    Article  CAS  PubMed  Google Scholar 

  • Snoeck A, Remacle C, Reusens B et al (1990) Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol Neonat 57:107–118

    Article  CAS  Google Scholar 

  • Tam WH, Ma RCW, Ozaki R et al (2017) In utero exposure to maternal hyperglycemia increases childhood cardiometabolic risk in the offspring. Diabetes Care 40:679–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang J, Zhu Z, Xia S et al (2015) Chronic hypoxia in pregnancy affected vascular tone of renal interlobar arteries in the offspring. Sci Rep 5:9723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarry-Adkins JL, Martin-Gronert MS, Chen JH et al (2008) Maternal diet influences DNA damage, aortic telomere length, oxidative stress, and antioxidant defense capacity in rats. FASEB J 22:2037–2044

    Article  CAS  PubMed  Google Scholar 

  • Tarry-Adkins JL, Chen JH, Smith NS et al (2009) Poor maternal nutrition followed by accelerated postnatal growth leads to telomere shortening and increased markers of cell senescence in rat islets. FASEB J 23:1521–1528

    Article  CAS  PubMed  Google Scholar 

  • Tarry-Adkins JL, Chen JH, Jones RH et al (2010) Poor maternal nutrition leads to alterations in oxidative stress, antioxidant defense capacity, and markers of fibrosis in rat islets: potential underlying mechanisms for development of the diabetic phenotype in later life. FASEB J 24:2762–2771

    Article  CAS  PubMed  Google Scholar 

  • Tarry-Adkins JL, Blackmore HL, Martin-Gronert MS et al (2013) Coenzyme Q10 prevents accelerated cardiac aging in a rat model of poor maternal nutrition and accelerated postnatal growth. Mol Metab 2:480–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarry-Adkins JL, Fernandez-Twinn DS, Chen JH et al (2014) Nutritional programming of coenzyme Q10: potential for prevention and intervention? FASEB J 28:5398–5405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarry-Adkins JL, Fernandez-Twinn DS, Madsen R et al (2015) Coenzyme Q10 prevents insulin signaling dysregulation and inflammation prior to development of insulin resistance in male offspring of a rat model of poor maternal nutrition and accelerated postnatal growth. Endocrinology 156:3528–3537

    Article  CAS  PubMed  Google Scholar 

  • Tarry-Adkins JL, Fernandez-Twinn DS, Hargreaves IP (2016a) Coenzyme Q10 prevents hepatic fibrosis, inflammation and oxidative stress in a male model of poor maternal nutrition and accelerated postnatal growth. Am J Clin Nutr 103:579–588

    Article  CAS  PubMed  Google Scholar 

  • Tarry-Adkins JL, Fernandez-Twinn DS, Chen JH (2016b) Poor maternal nutrition and accelerated postnatal growth induces an accelerated aging phenotype and oxidative stress in skeletal muscle of male rats. Dis Model Mech 9:1221–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor PD, McConnell JM, Khan IY et al (2005) Impaired glucose homeostasis and mitochondrial abnormalities in offspring of rat fed a fat-rich diet during pregnancy. Am J Physiol Regul Integr Comp Physiol 288:R134–R139

    Article  CAS  PubMed  Google Scholar 

  • United Nations, Department of Economic and Social Affairs, Population Division (2015) World Population Ageing (ST/ESA/SER.A/390). www.un.org/en/development/desa/population/…/pdf/ageing/WPA2015_Report.pdf. Accessed 20 Nov 2017

  • Valko M, Leibfritz D, Moncol J et al (2006) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  PubMed  CAS  Google Scholar 

  • Vickers MH, Reddy S, Ikenasio A et al (2001) Dysregulation of the adipoinsular axis – a mechanism for the pathogenesis of hyperleptinemia and adipogenic diabetes induced by fetal programming. J Endocrinol 170:323–332

    Article  CAS  PubMed  Google Scholar 

  • von Zglincki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27(7):339–344

    Article  Google Scholar 

  • Walton SL, Bielefeldt-Ohmann H, Singh RR et al (2017) Prenatal hypoxia leads to hypertension, renal renin-angiotensin system activation and exacerbates salt- induced pathology in a sex dependent manner. Sci Rep 7:8241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welham SJ, Wade A, Woolfe AS (2002) Protein restriction in pregnancy is associated with increased apoptosis of mesenchymal cells at the start of rat metanephrogenesis. Kid Int 61:1231–1242

    Article  CAS  Google Scholar 

  • Welham SJ, Riley PR, Wade A et al (2005) Maternal diet programs embryonic kidney gene expression. Physiol Genomics 22:48–56

    Article  CAS  PubMed  Google Scholar 

  • Wlodek ME, Westcott K, Siebel AL et al (2008) Growth restriction before or after birth reduces nephron number and increases blood pressure in male rats. Kid Int 74:187–195

    Article  Google Scholar 

  • Xiao D, Kou H, Zhang L et al (2017) Prenatal food restriction with postnatal high-fat diet alters glucose metabolic function in adult rat offspring. Arch Med Res 48:35–45

    Article  CAS  PubMed  Google Scholar 

  • Zambrano E, Sosa-Larios T, Calzada L et al (2016) Decreased basal insulin secretion from pancreatic islets of pups in a rat model of maternal obesity. J Endocrinol 231:49–57

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Lewis RM, Wang C et al (2005) Maternal dietary iron restriction modulates hepatic lipid metabolism in the fetuses. Am J Physiol Regul Intergr Comp Physiol 288:R104–R111

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tarry-Adkins, J.L., Ozanne, S.E. (2019). Poor Early Growth and Age-Associated Disease. In: Harris, J., Korolchuk, V. (eds) Biochemistry and Cell Biology of Ageing: Part II Clinical Science. Subcellular Biochemistry, vol 91. Springer, Singapore. https://doi.org/10.1007/978-981-13-3681-2_1

Download citation

Publish with us

Policies and ethics