Skip to main content

Abstract

A contour line (also isoline, isopleth, or isarithm) is a line on a map joining points of equal height or depth above or below a level, usually mean sea level. It is often just called a “contour”. Each contour is a closed curve (Veregin 1999, 2000; Cheung and Shi 2004). The difference in height or depth between successive contour lines is the contour interval. It generally becomes greater and greater when the map scale becomes less and less (Joao 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ai T., 2007, The drainage network extraction from contour lines for contour line generalization, ISPRS Journal of Photogrammetry & Remote Sensing 62: 93–103

    Article  Google Scholar 

  • Ai T., Guo RZ, Liu YL. 2000, A Binary Tree Representation of Bend Hierarchical Structure Based on Gestalt Principles. Proceedings of the 9th International Symposium on Spatial Data Handling. Beijing, China, 2000.

    Google Scholar 

  • Band L.E., 1986, Topographic Partition of Watersheds with Digital Elevation Models, Water Resource Research, 22(1):15–24.

    Article  Google Scholar 

  • Boyell R.L. and Ruston H., 1963, Hybrid techniques for real-time radar simulation. In the Proceedings of the 1963 Fall Joint Computer Conference, pages 445–458.

    Google Scholar 

  • Cheung, C. K., Shi, W. (2004): Estimation of the Positional Uncertainty in Line Simplification in GIS. The Cartographic Journal, Vol.41, No. 1, 37–45.

    Google Scholar 

  • Cromley, R. G. (1991): Hierarchical Methods of Line Simplification. Cartography and Geographic Information Systems, Vol. 18, No.2, 125–131.

    Google Scholar 

  • Douglas, D.H., and Peucker, T.K., 1973. Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or Its Caricature. The Canadian Cartographer, 10,2, 112–122.

    Article  Google Scholar 

  • Fei L.f, 1998, Experiments on the group generalization of contour lines for topographic maps, Geo-spatial Information Science, 1:1, 85–95.

    Google Scholar 

  • Hoppe H. 1996, Progressive Meshes. In: ACM SIGGRAPH’96 Proceedings, New York, USA

    Google Scholar 

  • Horton R E. 1945, Erosion Development of Streams and Drainage Basins: Hydrophysical Approach to Quantitative Morphology. Bulletin of the Geological Society of America, 56(3):275–370.

    Article  Google Scholar 

  • Joao, E. M. (1998): Causes and consequences of map generalisation. Research Monographs in Geographical Information Systems. Taylor & Francis, London.

    Google Scholar 

  • Jones N L, Wright S G, Maidment D R. 1990, Watershed Delineation with Triangle-Based Terrain Models. Journal of Hydraulic Engineering, 116(6):1232–1251.

    Article  Google Scholar 

  • Jones, C. B., and Abraham, I. M., 1987. Line Generalisation in a Global Cartographic Database. Cartographica, 24, 3, 32–45.

    Article  Google Scholar 

  • Li Z. and Openshaw S., 1992, Algorithm for automatic line simplification based on a natural principle of objective generalization, International Journal of Geographic Information Systems, 6(5):373–389

    Article  Google Scholar 

  • Liu Y. and Zhai J.S., 2005, An automatic method for recognizing topographic terrain lines, Hydrographical Surveying and Mapping,25(3):21–23

    Google Scholar 

  • Mandelbrot, B. B., 1967. How long is the Coast of Britain? Statistical Self-similarity and Fractional Dimension. Science. 156, 3775, 636–638.

    Article  Google Scholar 

  • Mandelbrot, B. B., 1975. Stochastic models for the Earth’s relief, the shape and the fractal dimension of the coastlines, and the number-area rule for islands. Proc. Nat. Acad. Sci. (USA), 72,10, 3825–3828.

    Article  Google Scholar 

  • Mandelbrot, B. B., 1982. The Fractal Geometry of Nature. W. H. Freeman & Co.

    Google Scholar 

  • Mandelbrot, B. B., 1985. Self-affine Fractals and Fractal Dimension. Physica Scripta, 32, 257–260.

    Article  Google Scholar 

  • Mark D M. 1984, Automated Detection of Drainage Network from Digital Elevation Model. Cartographica, 21(3) :168–178.

    Article  Google Scholar 

  • Mark, D. M. and Aronson, P. B., 1984. Scale-Dependent Fractal Dimensions of Topographic Surfaces: An Empirical Investigation, with Applications in Geomorphology and Computer Mapping. Mathematical Geology, 16(7): 671–683.

    Article  Google Scholar 

  • McMaster, R. B. (1986): A Statistical Analysis of Mathematical Measures for Linear Simplification. The American Cartographer, Vol.13, No. 2, 103–116.

    Google Scholar 

  • McMaster, R. B. (1987): Automated line generalization. Cartographica, Vol. 24, No. 2, 74–111.

    Article  Google Scholar 

  • McMaster, R. B., 1989. Introduction to Numerical Generalization in Cartography. Cartographica, 26,1, 1–6.

    Article  Google Scholar 

  • Nakos, B., 1990. Digital Representation of Cartographic Phenomena Based on Fractal Geometry Theory. Application on Terrain’s Relief Using Digital Models. Phd. Thessis. Department of Rural and Surveying Engineering, National Technical University of Athens. (In Greek)

    Google Scholar 

  • Nakos, B., 1996. The Use of Fractal Geometry Theory for Performing Digital Generalization Tasks. Proceedings of the 2nd National Cartographic Conference, Hellenic Cartographic Society, 293–301. (In Greek)

    Google Scholar 

  • Nakos, B., 1999. Comparison of Manual Versus Digital Line Simplification. Proceedings of 3rd Workshop on Automated Map Generalization. International Cartographic Association. Commission of Map Generalization. (http://www.survey.ntua.gr/main/labs/carto/Comparison.PDF)

  • O’Callaghan J F, Mark D M.1984, The Extraction of Drainage Networks from Digital Elevation Data. Computer Vision, Graphics and Image Processing, 28(3) :323–344.

    Article  Google Scholar 

  • Qian J, Ehrich R W, Campbell J B. 1990, An Expert System for Automatic Extraction of Drainage Networks from Digital Elevation Data. IEEE Transactions on Geoscience and Remote Sensing, 28(1): 29–45.

    Article  Google Scholar 

  • Ramer U., 1972, An Iterative Procedure for the Polygonal Approximation of Plane Curves. Computer Graphics and Image Processing, 1, 244–256.

    Article  Google Scholar 

  • Richardson, L. F., 1961. The problem of contiguity: an appendix of statistics of deadly quarrels. General Systems Yearbook, 6, 139–187.

    Google Scholar 

  • Scheidegger A E.1996, Effect of Map Scale on Stream Orders. Bulletin International Association of Science Hydrology,11(1):56–61.

    Google Scholar 

  • Shreve R L.1996, Statistical Law of Stream Numbers. Journal of Geology, 74(1): 17–37.

    Article  Google Scholar 

  • Strahler A N.1952, Dynamic Basis of Geomorphology. Bulletin of Geological Society of America,63 (7): 923–938.

    Article  Google Scholar 

  • Tang L. 1992,Automatic Extraction of Specific Geo-morphological Elements from Contours. in: Proceedings of the 5th SDH conference. Charleston , SC. 2:554–556.

    Google Scholar 

  • Töpfer, F., and Pillewizer, W., 1966. The Principles of Selection. The Cartographic Journal, 3,1, 10–16.

    Article  Google Scholar 

  • Veregin, H. (1999): Line Simplification, Geometric Distortion, and Positional Error. Cartographica, Vol. 36, No. 1, 25–39.

    Article  Google Scholar 

  • Veregin, H. (2000): Quantifying positional error induced by line simplification. International Journal of Geographical Information Science, Vol. 14, No. 2, 113–130.

    Article  Google Scholar 

  • Visvalingam, M., and Wyatt, J. D., 1993. Line generalization by repeated elimination of points. The Cartographic Journal, 30, 1, 46–51.

    Article  Google Scholar 

  • Wang, Z., Muller, J.-C. (1998): Line Generalization Based on Analysis of Shape Characteristics. Cartography and Geographic Information Systems, Vol. 25, No. 1, 3–15.

    Google Scholar 

  • Weibel R.1992,Model and Experiments for Adaptive Computer2Assisted Terrain Generalization, Cartography and Geographic Information Systems, 19(3):133–153.

    Google Scholar 

  • Weibel, R., 1997. Generalization of Spatial Data: Principles and Selected Algorithms. In Algorithmic Foundations of Geographical Information Systems (eds. van Kreveld et al.) Springer-Verlag.

    Google Scholar 

  • Werner C. 1988, Formal Analysis of Ridge and Channel Pattern in Maturely Eroded Terrain. Anneals of the Association of America Geographers, 78(2): 253–270.

    Article  Google Scholar 

  • Wolf G W. 1988, Weighted Surface Networks and Their Application to Cartographic Generalization,in: Proceedings of Visualization Technology and Algorithm, W Barth (ed.), Berlin : Springer.

    Google Scholar 

  • Yan H.W. Chu Y.D. Yang S.W. and Sun J.G. 2007, Foundation of Principles and Algorithms in Computer-Aided Cartography, Beijing: Science Press.

    Google Scholar 

  • Yoeli P.1984, Computer-Assisted Determination of the Valley and Ridge Lines of Digital Terrain Models, International Yearbook of Cartography, XXIV:197–206.

    Google Scholar 

  • Zhang J. 2002, On the theory and implementation techniques of multi-resolution spatial data models, PhD dissertation, Wuhan: Postgraduate School of Chinese Academy of Science, China.

    Google Scholar 

  • Zhang L.L. Wu F. and Wang L.H., 2005, Determination and applications of spatial relations among contour lines, Bulletin in Surveying and Mapping, 17(8):19–22

    Google Scholar 

  • Zhu W.B. Bi R.T. Guo P.S. and Zhang J., 2008, Research on the method of the auto-generalization of contour based on the algorithm of Multi-resolution Simplification, Journal of Shanxi Agricultural University (Natural Science Edition), 28(3): 2–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yan, H. (2019). Description and Generalization of Contour Lines. In: Description Approaches and Automated Generalization Algorithms for Groups of Map Objects. Springer, Singapore. https://doi.org/10.1007/978-981-13-3678-2_3

Download citation

Publish with us

Policies and ethics