Endogenous Signal-Responsive Transgene Switch Systems for Visualization and Purification of Specific Cells

  • Hideyuki Nakanishi
  • Hirohide SaitoEmail author
Part of the Current Human Cell Research and Applications book series (CHCRA)


Induced pluripotent stem cells (iPSCs) are induced to differentiate into target cells, and these differentiated cells are used for regenerative medicines or drug discovery. Using endogenous signal-responsive transgene switch systems, scientists can visualize different differentiation states and purify targeted cell types. These systems are composed of transgenes and binding domains of cell-specific proteins or miRNAs to detect endogenous molecules and regulate transgene expression. In this chapter, we describe the designs, operations, and applications of switch systems.


RNA binding protein microRNA Synthetic biology Stem cell Differentiation Imaging Cell purification Reporter gene In vitro transcription Regenerative medicine Modified mRNA Translation 



We are grateful to Dr. Shunsuke Kawasaki and Mr. Moe Hirosawa for assisting figure preparations. We also thank Dr. Peter Karagiannis (Kyoto University) for English proofreading.


  1. 1.
    Chen Q, Hu G. Post-transcriptional regulation of the pluripotent state. Curr Opin Genet Dev. 2017;46:15–23.CrossRefGoogle Scholar
  2. 2.
    Hao J, Duan FF, Wang Y. MicroRNAs and RNA binding protein regulators of microRNAs in the control of pluripotency and reprogramming. Curr Opin Genet Dev. 2017;46:95–103.CrossRefGoogle Scholar
  3. 3.
    Medioni C, Mowry K, Besse F. Principles and roles of mRNA localization in animal development. Development. 2012;139:3263–76.CrossRefGoogle Scholar
  4. 4.
    Martin KC, Ephrussi A. mRNA localization: gene expression in the spatial dimension. Cell. 2009;136:719–30.CrossRefGoogle Scholar
  5. 5.
    Saito H, Kobayashi T, Hara T, Fujita Y, Hayashi K, Furushima R, Inoue T. Synthetic translational regulation by an L7Ae-kink-turn RNP switch. Nat Chem Biol. 2010;6:71–8.CrossRefGoogle Scholar
  6. 6.
    Saito H, Fujita Y, Kashida S, Hayashi K, Inoue T. Synthetic human cell fate regulation by protein-driven RNA switches. Nat Commun. 2011;2:160.CrossRefGoogle Scholar
  7. 7.
    Stapleton JA, Endo K, Fujita Y, Hayashi K, Takinoue M, Saito H, Inoue T. Feedback control of protein expression in mammalian cells by tunable synthetic translational inhibition. ACS Synth Biol. 2012;1:83–8.CrossRefGoogle Scholar
  8. 8.
    Endo K, Stapleton JA, Hayashi K, Saito H, Inoue T. Quantitative and simultaneous translational control of distinct mammalian mRNAs. Nucleic Acids Res. 2013;41:1–12.CrossRefGoogle Scholar
  9. 9.
    Endo K, Hayashi K, Inoue T, Saito H. A versatile cis-acting inverter module for synthetic translational switches. Nat Commun. 2013;4:2393.CrossRefGoogle Scholar
  10. 10.
    Wroblewska L, Kitada T, Endo K, Siciliano V, Stillo B, Saito H, Weiss R. Mammalian synthetic circuits with RNA binding proteins for RNA-only delivery. Nat Biotechnol. 2015;33:839–41.CrossRefGoogle Scholar
  11. 11.
    Kawasaki S, Fujita Y, Nagaike T, Tomita K, Saito H. Synthetic mRNA devices that detect endogenous proteins and distinguish mammalian cells. Nucleic Acids Res. 2017;45:1–13.CrossRefGoogle Scholar
  12. 12.
    Kozomara A, Griffiths-Jones S. MiRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011;39:D152–7.CrossRefGoogle Scholar
  13. 13.
    Miki K, Endo K, Takahashi S, et al. Efficient detection and purification of cell populations using synthetic microRNA switches. Cell Stem Cell. 2015;16:699–711.CrossRefGoogle Scholar
  14. 14.
    Endo K, Hayashi K, Saito H. High-resolution identification and separation of living cell types by multiple microRNA-responsive synthetic mRNAs. Sci Rep. 2016;6:21991.CrossRefGoogle Scholar
  15. 15.
    Parr CJC, Katayama S, Miki K, Kuang Y, Yoshida Y, Morizane A, Takahashi J, Yamanaka S, Saito H. microRNA-302 switch to identify and eliminate undifferentiated human pluripotent stem cells. Sci Rep. 2016;6:32532.CrossRefGoogle Scholar
  16. 16.
    Nakanishi H, Miki K, Komatsu KR, Umeda M, Mochizuki M, Inagaki A, Yoshida Y, Saito H. Monitoring and visualizing microRNA dynamics during live cell differentiation using microRNA-responsive non-viral reporter vectors. Biomaterials. 2017;128:121–35.CrossRefGoogle Scholar
  17. 17.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–22.CrossRefGoogle Scholar
  18. 18.
    Hirosawa M, Fujita Y, Parr CJC, Hayashi K, Kashida S, Hotta A, Woltjen K, Saito H. Cell-type-specific genome editing with a microRNA-responsive CRISPR–Cas9 switch. Nucleic Acids Res. 2017;45:e118.CrossRefGoogle Scholar
  19. 19.
    Tashiro K, Inamura M, Kawabata K, Sakurai F, Yamanishi K, Hayakawa T, Mizuguchi H. Efficient adipocyte and osteoblast differentiation from mouse induced pluripotent stem cells by adenoviral transduction. Stem Cells. 2009;27:1802–11.CrossRefGoogle Scholar
  20. 20.
    Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249:505–10.CrossRefGoogle Scholar
  21. 21.
    Darmostuk M, Rimpelova S, Gbelcova H, Ruml T. Current approaches in SELEX: an update to aptamer selection technology. Biotechnol Adv. 2014;33:1141–61.CrossRefGoogle Scholar
  22. 22.
    Kato Y, Sato K, Asai K, Akutsu T. Rtips: fast and accurate tools for RNA 2D structure prediction using integer programming. Nucleic Acids Res. 2012;40:29–34.CrossRefGoogle Scholar
  23. 23.
    Kawaguchi R, Kiryu H. Parallel computation of genome-scale RNA secondary structure to detect structural constraints on human genome. BMC Bioinformatics. 2016;17:203.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan

Personalised recommendations