Skip to main content
Book cover

Astrobiology pp 399–407Cite as

Enceladus: Evidence and Unsolved Questions for an Ice-Covered Habitable World

  • Chapter
  • First Online:

Abstract

The icy midsized satellite of Saturn—Enceladus—has become the central to astrobiology since the finding of its dramatic ongoing geological activity. The water-rich plumes erupting from the warm fractures on the icy crust near the South Pole of Enceladus originate from its global subsurface ocean that interacts with the rocky core. In situ measurements of the plume by the Cassini spacecraft showed that the ocean contains dissolved gas species, such as CO2, NH3, CH4, and H2, which can provide disequilibrium redox energy to support methanogenic life. The salt composition of the plume indicates an alkaline pH of the ocean (pH ~9 to 11). The plume also contains significant amounts of organic matter, including high-molecular-weight organic compounds, although its origin remains unclear. Ongoing hydrothermal activity at temperatures greater than 90 °C is highly likely to exist on the seafloor or within the rocky core, which could play a role in sustaining the chemical disequilibrium within the ocean. These observations suggest that Enceladus is a planetary body thus far that currently meets the fundamental requirements for habitability and life—liquid water, organic matter, and bioavailable energy—beyond Earth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amend JP, McCollom TM, Hentscher M, Bach W (2011) Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types. Geochim Cosmochim Acta 75:5736–5748

    Article  CAS  Google Scholar 

  • Beuthe M, Rivoldini A, Trinh A (2016) Enceladus’s and Dione’s floating ice shells supported by minimum stress isostasy. Geophys Res Lett 43:10088–10096

    Article  Google Scholar 

  • Bocklelée-Morvan D, Crovisier J, Mumma MJ, Weaver HA (2004) The composition of cometary volatiles. In: Festou MC, Keller HU, Weaver HA (eds) Comets II. Univ. Arizona Press, Tucson, pp 391–423

    Google Scholar 

  • Čadek O et al (2016) Enceladus’s internal ocean and ice shell constrained from Cassini gravity, shape and libration data. Geophys Res Lett 43:5653–5660

    Article  Google Scholar 

  • Canup RM, Ward WR (2006) A common mass scaling for satellite systems of gaseous planets. Nature 441:834–839

    Article  CAS  Google Scholar 

  • Choblet G et al (2017) Powering prolonged hydrothermal activity inside Enceladus. Nature Astron 1:841–847. https://doi.org/10.1038/s41550-017-0289-8

    Article  Google Scholar 

  • Cody GD, Heying E, Alexander CMO, Nittler LR, Kilcoyne ALD, Sandford SA, Stroud RM (2011) Establishing a molecular relationship between chondritic and cometary organic solids. Proc Natl Acad Sci 108:19171–19176

    Article  CAS  Google Scholar 

  • Crida A, Charnoz S (2012) Formation of regular satellites from ancient massive rings in the solar system. Science 338:1196–1199

    Article  CAS  Google Scholar 

  • Ćuk M, Dones L, Nesvorny D (2016) Dynamical evidence for a late formation of Saturn’s moons. Astrophys J 820:97 (16 pp)

    Article  Google Scholar 

  • Fuller J, Luan J, Quataert E (2016) Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems. Mon Not R Astron Soc 458:3867–3879

    Article  CAS  Google Scholar 

  • Glein CR, Zolotov MY, Shock EL (2008) The oxidation state of hydrothermal systems on early Enceladus. Icarus 197:157–163

    Article  CAS  Google Scholar 

  • Glein CR, Baross JA, Waite JH Jr (2015) The pH of Enceladus’ ocean. Geochim Cosmochim Acta 162:202–219

    Article  CAS  Google Scholar 

  • Goesmann F et al (2015) Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry. Science 349:aab0689 1–3

    Article  Google Scholar 

  • Hansen CJ et al (2011) The composition and structure of the Enceladus plume. Geophys Res Lett 38:L11202. https://doi.org/10.1029/2011GL047415

    Article  CAS  Google Scholar 

  • Hsu H-W et al (2015) Silica nanoparticles as an evidence of hydrothermal activities at Enceladus. Nature 519:207–210

    Article  CAS  Google Scholar 

  • Iess L et al (2014) The gravity field and interior structure of Enceladus. Science 344:78–80

    Article  CAS  Google Scholar 

  • Ingersoll AP, Pankine AA (2010) Subsurface heat transfer on Enceladus: conditions under which melting occurs. Icarus 206:594–607

    Article  CAS  Google Scholar 

  • Jaumann R et al (2009) Icy satellites: geological evolution and surface processes. In: Dougherty M, Esposito L, Krimigis S (eds) Saturn from Cassini-Huygens. Springer, Heidelberg, pp 637–681

    Chapter  Google Scholar 

  • Kamata S, Nimmo F (2017) Interior thermal state of Enceladus inferred from the viscoelastic state of the ice shell. Icarus 284:387–393

    Article  Google Scholar 

  • Kebukawa Y, Kilcoyne ALD, Cody GD (2013) Exploring the potential formation of organic solids in chondrites and comets through polymerization of interstellar formaldehyde. Astrophys J 771(19):1–12

    Google Scholar 

  • Keller LP et al (2006) Infrared spectroscopy of comet 81P/wild 2 samples return by stardust. Science 314:1728–1731

    Article  CAS  Google Scholar 

  • Kelley DS et al (2005) A serpentine-hosted ecosystem: the lost city hydrothermal field. Science 307:1428–1434

    Article  CAS  Google Scholar 

  • Khawaja N et al (2015) Organic compounds from Enceladus’ sub-surface ocean as seen by CDA. In: European Planetary Science Congress 2015, 10: 652

    Google Scholar 

  • Le Gall A et al (2017) Thermally anomalous features in the subsurface of Enceladus’s south polar terrain. Nature Astron 1:0063. https://doi.org/10.1038/s41550-017-0063

    Article  Google Scholar 

  • Mayhew LE, Ellison ET, McCollom TM, Trainor TP, Templeton AS (2013) Hydrogen generation from low-temperature water-rock reactions. Nat Geosci 6:478–484

    Article  CAS  Google Scholar 

  • McCollom TM, Shock EL (1997) Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochim Cosmochim Acta 61:4375–4391

    Article  CAS  Google Scholar 

  • McKay CP, Porco CC, Altheide T, Davis WL, Kral TA (2008) The possible origin and persistence of life on Enceladus and detection of biomarkers in the plume. Astrobiology 8:909–919

    Article  CAS  Google Scholar 

  • McKinnon WB (2015) Effect of Enceladus’s rapid synchronous spin on interpretation of Cassini gravity. Geophys Res Lett 41:2137–2143

    Article  Google Scholar 

  • Meyer J, Wisdom J (2007) Tidal heating in Enceladus. Icarus 188:535–539

    Article  Google Scholar 

  • Nakajima M, Ingersoll AP (2016) Controlled boiling on Enceladus. 1. Model of the vapor-driven jets. Icarus 272:309–318

    Article  Google Scholar 

  • O’Neill CO, Nimmo F (2010) The role of episodic overturn in generating the surface geology and heat flow on Enceladus. Nat Geosci 3:88–91

    Article  Google Scholar 

  • Porco CC et al (2006) Cassini observes the active South Pole of Enceladus. Science 311:1393–1401

    Article  CAS  Google Scholar 

  • Postberg F et al (2009) Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459:1098–1101

    Article  CAS  Google Scholar 

  • Postberg F, Schmidt J, Hillier J, Kempf S, Srama R (2011) A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474:620–622

    Article  CAS  Google Scholar 

  • Postberg F et al (2018) Macromolecular organic compounds from the depths of Enceladus. Nature 558:564–568

    Article  CAS  Google Scholar 

  • Schmidt J, Brilliantov N, Spahn F, Kempf S (2008) Slow dust in Enceladus’ plume from condensation and wall collisions in tiger stripe fractures. Nature 451:685–688

    Article  CAS  Google Scholar 

  • Sekine Y, Genda H (2012) Giant impacts in the Saturnian system: a possible origin of diversity in the inner mid-sized satellites. Planet Space Sci 63–64:133–138

    Article  Google Scholar 

  • Sekine Y et al (2015) High-temperature water-rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nature Comm 6:8604. https://doi.org/10.1038/ncomms9604

    Article  CAS  Google Scholar 

  • Sekine Y, Genda H, Kamata S, Funatsu T (2017) The Charon-forming giant impact as a source of Pluto’s dark equatorial regions. Nature Astron 1:0031. https://doi.org/10.1038/s41550-016-0031

    Article  Google Scholar 

  • Shibuya T, Komiya T, Nakamura K, Takai K, Maruyama S (2010) Highly alkaline, high-temperature hydrothermal fluids in the early Archean ocean. Precambrian Res 182:230–238

    Article  CAS  Google Scholar 

  • Shibuya T et al (2013) Reactions between basalt and CO2-rich seawater at 250 and 350°C, 500 bars: implications for the CO2 sequestration into the modern oceanic crust and composition of hydrothermal vent fluid in the CO2-rich early ocean. Chem Geol 359:1–9

    Article  CAS  Google Scholar 

  • Shibuya T et al (2015) Hydrogen-rich hydrothermal environments in the Hadean ocean inferred from serpentinization of komatiites at 300 °C and 500 bar. Prog Earth and Planet Sci 2:46. https://doi.org/10.1186/s40645-015-0076-z

    Article  Google Scholar 

  • Shibuya T, Russell M, Takai K (2016) Free energy distribution and chimney minerals in Hadean submarine alkaline vent systems; importance of iron redox reactions under anoxic condition. Geochim Cosmochim Acta 175:1–19

    Article  CAS  Google Scholar 

  • Shoji D, Hussmann H, Sohl F, Kurita K (2014) Non-steady state tidal heating of Enceladus. Icarus 235:75–85

    Article  Google Scholar 

  • Spencer JR et al (2013) Enceladus heat flow from high spatial resolution thermal emission observations. In: European Planetary Space Congress 2013, 8: 840

    Google Scholar 

  • Thomas R et al (2016) Enceladus’s measured physical libration requires a global subsurface ocean. Icarus 264:37–47

    Article  Google Scholar 

  • Ueda H et al (2016) Reactions between komatiite and CO2-rich seawater at 250 °C and 350 °C, 500 bars: implications for hydrogen generation in the Hadean seafloor hydrothermal system. Prog Earth Planet Sci 3:35. https://doi.org/10.1186/s40645-016-0111-8

    Article  Google Scholar 

  • Van Hoolst T, Baland R–M, Trinh A (2016) The diumal libration and interior structure of Enceladus. Icarus 277:311–318

    Article  Google Scholar 

  • Waite JH Jr et al (2009) Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature 460:487–490

    Article  CAS  Google Scholar 

  • Waite JH et al (2017) Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science 356:155–159

    Article  CAS  Google Scholar 

  • Yoshizaki M et al (2009) H2 generation by experimental hydrothermal alteration of komatiitic glass at 300°C and 500 bars: a preliminary result from on-going experiment. Geochem J 43:17–22

    Article  Google Scholar 

  • Zolotov MY (2007) An oceanic composition on early and today’s Enceladus. Geophys Res Lett 34:L23203. https://doi.org/10.1029/2007GL031234

    Article  Google Scholar 

  • Zolotov MY (2012) Aqueous fluid composition in CI chondritic materials: chemical equilibrium assessments in closed systems. Icarus 220:713–729

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by MEXT KAKENHI Grant Number JP 17H0655, 17H06456, and 17H06457.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhito Sekine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sekine, Y., Shibuya, T., Kamata, S. (2019). Enceladus: Evidence and Unsolved Questions for an Ice-Covered Habitable World. In: Yamagishi, A., Kakegawa, T., Usui, T. (eds) Astrobiology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3639-3_25

Download citation

Publish with us

Policies and ethics