Skip to main content

Active Surface and Interior of Europa as a Potential Deep Habitat

  • Chapter
  • First Online:
Astrobiology

Abstract

Jupiter’s moon Europa may have an internal ocean of liquid water, along with the chemical compounds and energy source that life requires. Europa is covered by the solid icy shell, similar to other solid bodies in the outer solar system. The solid icy shell fractures and deforms creating cracks, ridges, and bands in relatively a recent period. Galileo spacecraft data indicates a warm interior, which means a convecting icy shell above a liquid water ocean. In addition, Hubble Space Telescope recently found a signature of active water plumes from the southern hemisphere. Here the current knowledge on the characteristic of Europa, geology, composition, interior, and surrounding environment, in the relation to the possible presence of life will be summarized. Future spacecraft exploration plans for Europa and their science objectives are also introduced. With the understanding of Europa’s potential for life, we can consider another style of habitable world hidden by the icy surface, “deep habitat,” which is different from Earth’s one, and can address the fundamental question: Are we alone in the universe?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bierhaus EB et al (2009) Europa’s crater distributions and surface ages. In: Europa. The University of Arizona Press, Tucson, pp 161–180

    Google Scholar 

  • Carlson RW et al (1999) Hydrogen peroxide on the surface of Europa. Science 283:2062

    Article  CAS  Google Scholar 

  • Chyba CF, Phillips CB (2001) Possible ecosystems and the search for life on Europa. Proc Natl Acad Sci U S A 98:801–804

    Article  CAS  Google Scholar 

  • Gaidos EJ, Nimmo F (2000) Tectonics and water on Europa. Nature 405:637

    Article  CAS  Google Scholar 

  • Goodman JC et al (2004) Hydrothermal plume dynamics on Europa: implications for chaos formation. J Geophys Res 109. https://doi.org/10.1029/2003JE002073

  • Grasset O et al (2013) JUpiter ICy moons Explorer (JUICE): an ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet Space Sci 78:1–21

    Article  Google Scholar 

  • Greeley R et al (2004) Geology on Europa. In: Jupiter: the planet, satellites and magnetosphere. Cambridge University Press, Cambridge, pp 329–362

    Google Scholar 

  • Greenberg R et al (1998) Tectonic processes on Europa: tidal stresses, mechanical response, and visible features. Icarus 135:64–78

    Article  Google Scholar 

  • Hall DT et al (1995) Detection of an oxygen atmosphere on Jupiter’s moon Europa. Nature 373:677–679

    Article  CAS  Google Scholar 

  • Hand KP et al (2015) Europa’s surface color suggests an ocean rich with sodium chloride. Geophys Res Lett 42:3174–3178

    Article  CAS  Google Scholar 

  • Hansen GB et al (2004) Amorphous and crystalline ice on the Galilean satellites: a balance between thermal and radiolytic processes. J Geophys Res 109:E01012. https://doi.org/10.1029/2003JE002149

    Article  CAS  Google Scholar 

  • Hoppa GV et al (1999) Formation of cycloidal features on Europa. Science 285:1899–1902

    Article  CAS  Google Scholar 

  • Kattenhorn SA, Prockter LM (2014) Evidence for subduction in the ice shell of Europa. Nat Geosci 7:762–767

    Article  CAS  Google Scholar 

  • Khurana KK et al (1998) Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395:777–780

    Article  CAS  Google Scholar 

  • Kimura J et al (2007) Tectonic history of Europa: coupling between internal evolution and surface stresses. Earth Planets Space 59:113–125

    Article  Google Scholar 

  • Kivelson MG et al (1999) Europa and Callisto: induced or intrinsic fields in a periodically varying plasma environment. J Geophys Res 104:4609–4625

    Article  Google Scholar 

  • Kivelson MG et al (2000) Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. Science 289:1340–1343

    Article  CAS  Google Scholar 

  • Kivelson MG et al (2002) The permanent and inductive magnetic moments of Ganymede. Icarus 157:507–522

    Article  Google Scholar 

  • Lane et al (1981) Evidence for sulfur implantation in Europa’s UV absorption band. Nature 292:38–39

    Article  CAS  Google Scholar 

  • Lee S et al (2005) Mechanics of tidally driven fractures in Europa’s ice shell. Icarus 165:267–379

    Google Scholar 

  • Levison et al (2000) NOTE: planetary impact rates from ecliptic comets. Icarus 143:415–420

    Article  Google Scholar 

  • Manga M, Michaut C (2017) Formation of lenticulae on Europa by saucer-shaped sills. Icarus 286:261–269

    Article  Google Scholar 

  • McCord TB et al (1999) Hydrated salt minerals on Europa’s surface from the Galileo Near Infrared Spectrometer (NIMS) investigation. J Geophys Res 104:11,827–11,852

    Article  CAS  Google Scholar 

  • McEwen A (1986) Exogenic and endogenic albedo and color patterns on Europa. J Geophys Res 91:8077–8097

    Article  Google Scholar 

  • Moore JM et al (2009) Surface properties, regolith, and landscape degradation. In: Europa. The University of Arizona Press, Tucson, pp 329–352

    Google Scholar 

  • Moroz VI (1965) Infrared spectroscopy of satellites: the moon and the Galilean satellites of Jupiter. Astron Zh 42(1287), translated in Soviet Astron 9: 999–1006

    Google Scholar 

  • Nimmo F, Gaidos E (2002) Strike-slip motion and double ridge formation on Europa. J Geophys Res 107:1–2. https://doi.org/10.1029/2000JE001476

    Article  Google Scholar 

  • Nimmo F et al (2007) The goloba shape of Europa: constraints on lateral shell thickness variations. Icarus 191:183–192. https://doi.org/10.1016/j.icarus.2007.04.021

    Article  Google Scholar 

  • Nna-Mvondo D, Martinez-Frias J (2007) Komatiites: from Earth’s geological settings to planetary and astrobiological contexts. Earth Moon Planet 100:157–179

    Article  CAS  Google Scholar 

  • O’Brien DP et al (2002) A melt-through model for chaos formation on Europa. Icarus 156:152–161

    Article  Google Scholar 

  • Pilcher CB et al (1972) The Galilean satellites; identification of water frost. Science 178:1087–1089

    Article  CAS  Google Scholar 

  • Porter SB et al (2010) Micrometeorite impact annealing of ice in the outer solar system. Icarus 208:492–498

    Article  CAS  Google Scholar 

  • Quick LC et al (2017) Cryovolcanic emplacement of domes on Europa. Icarus 284:477–488

    Article  Google Scholar 

  • Roth L et al (2014) Transient water vapor at Europa’s south pole. Science 343:171–174

    Article  CAS  Google Scholar 

  • Saur J et al. (2014) The search for a subsurface ocean in Ganymede with Hubble space telescope observations of its auroral ovals. J Geophys Res 120. https://doi.org/10.1002/2014JA020778

    Google Scholar 

  • Schenk P, Turtle E (2009) Europa’s impact craters: probes of the icy shell. In: Europa. The University of Arizona Press, Tucson, pp 181–198

    Google Scholar 

  • Schmidt BE et al (2011) Active formation of ‘chaos terrain’ over shallow subsurface water on Europa. Nature 479:502–505

    Article  CAS  Google Scholar 

  • Sparks WB et al (2016) Probing for evidence of plumes on Europa with HST/STIS. Astrophys J 829:121

    Article  Google Scholar 

  • Spaun NA et al (1998) Conamara Chaos region, Europa: reconstruction of mobile polygonal ice blocks. Geophys Res Lett 25:4277

    Article  Google Scholar 

  • Strom RG et al (2015) The inner solar system cratering record and the evolution of impactor population. Astron Astrophys 15:407–434

    Article  Google Scholar 

  • Thomson RE, Delaney JR (2001) Evidence for a weakly stratified European ocean sustained by seafloor heat flux. J Geophys Res 106:12355–12365

    Article  Google Scholar 

  • Tufts BR et al (2000) Lithospheric dilation on Europa. Icarus 146:75–97

    Article  Google Scholar 

  • Vance S et al (2007) Hydrothermal systems in small ocean planets. Astrobiology 7(6):987–1005

    Article  CAS  Google Scholar 

  • Weiss JW (2004) Planetary parameters, in Jupiter: the planet, satellites and magnetosphere. Cambridge University Press, London, pp 699–709

    Google Scholar 

  • Williams DA et al (2000) A komatiite analog to potential ultramafic materials on Io. J Geophys Res 105:1671–1684

    Article  CAS  Google Scholar 

  • Zahnle K et al (2003) Cratering rates in the outer solar system. Icarus 163:263–289

    Article  Google Scholar 

  • Zimmer C et al (2000) Subsurface oceans on Europa and Callisto: constraints from Galileo magnetometer observations. Icarus 147:329–347

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Kimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kimura, J. (2019). Active Surface and Interior of Europa as a Potential Deep Habitat. In: Yamagishi, A., Kakegawa, T., Usui, T. (eds) Astrobiology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3639-3_24

Download citation

Publish with us

Policies and ethics