Skip to main content
Book cover

Astrobiology pp 353–366Cite as

Atmosphere of Mars

  • Chapter
  • First Online:

Abstract

It is believed that Mars underwent drastic climate change, changing its environment from warm and wet to cold and dry. This gives rise to the idea that Mars may have hosted life in the past and, indeed, may do so even today. Atmospheric evolution is thus an important key to understanding the history of Martian habitability. However, precise estimates of past atmospheric inventories including water, and their loss mechanisms, are difficult to be obtained. Recent studies have highlighted various interesting facts related to (i) the efficiency of mass transport from the lower to upper atmospheric reservoir and (ii) the deep energetic particle precipitation into the atmosphere from space. These new insights tell us that Mars is a mutually coupled system comprising the planet’s surface, lower and upper atmospheres, and the surrounding space environment. These relationships potentially imply an upward revision of the estimate of total atmospheric loss to space. Another relevant issue relates to the indirect signs of life in the Martian atmosphere. Scientists are particularly intrigued by clear evidence of a biological/geological signature, such as methane (CH4) in the Martian atmosphere. Although the presence of CH4 is still under debate because of large measurement uncertainties, the forthcoming ESA-Roscosmos mission, which employs the Trace Gas Orbiter (TGO), will settle questions on the existence of this gas and its origin.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aoki S, Giuranna M, Kasaba Y, Nakagawa H, Sindoni G, Geminale A, Formisano V (2015a) Search for hydrogen peroxide in the Martian atmosphere by the Planetary Fourier Spectrometer onboard Mars express. Icarus 245:177–183

    Article  CAS  Google Scholar 

  • Aoki S, Nakagawa H, Sagawa H, Giuranna M, Sindoni G, Aronica A, Kasaba Y (2015b) Seasonal variation of the HDO/H2O ratio in the atmosphere of Mars at the middle of northern spring and beginning of northern summer. Icarus 260:7–22

    Article  CAS  Google Scholar 

  • Atreya SK, Mahaffy PR, Wong AS (2007) Methane and related trace species on Mars: origin, loss, implications for life, and habitability. Planet Space Sci 55:358–369

    Article  CAS  Google Scholar 

  • Bertaux JL, Leblanc F, Witasse O, Quemerais E, Lilensten J, Stern SA, Sandel B, Korablev O (2005) Discovery of an aurora on Mars. Nature 435:790. https://doi.org/10.1038/nature03603

    Article  CAS  PubMed  Google Scholar 

  • Bougher S, Jakosky B, Halekas J, Grebowsky J, Luhmann J, Mahaffy P, Connerney J, Eparvier F, Ergun R, Larson D, McFadden J, Mitchell D, Shneider N, Zurek R, Mazelle C, Andersson L, Andrews D, Baird D, Baker DN, Bell JM, Benna M, Brain D, Chaffin M, Chamberlin P, Chaugray JY, Clarke J, Collinson G, Combi M, Crary F, Cravens T, Crismani M, Curry S, Curtis D, Deighan J, Delory G, Dewey R, DiBraccio G, Dong C, Dong Y, Dunn P, Elrod M, England S, Eriksson A, Espley J, Evans S, Fang X, Fillingim M, Fortier K, Fowler CM, Fox J, Groller H, Guzewich S, Hara T, Harada Y, Holsclaw G, Jain SK, Jolitz R, Leblanc F, Lee CO, Lee Y, Lefèvre F, Lillis R, Livi R, Lo D, Ma Y, Mayyasi M, McClintock W, McEnulty T, Modolo Montmessin RF, Morooka M, Nagy A, Olsen K, Peterson W, Rahmati A, Ruhunusiri S, Russell CT, Sakai S, Sauvaud JA, Seki K, Steckiewicz M, Stevens M, Stewart AIF, Stiepen A, Stone S, Tenishev V, Thiemann E, Tolson R, Toublanc D, Vogt M, Weber T, Withers P, Woods T, Yelle R (2015) Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability. Science 350:aad0459–aad0451

    Article  CAS  PubMed  Google Scholar 

  • Bruinsma SL, Forbes JM (2008) Medium- to large-scale density variability as observed by CHAMP. Space Weather 6:S08002. https://doi.org/10.1029/2008SW0004111

    Article  Google Scholar 

  • Carlsson E, Fedorov A, Barabash S, Budnik E, Grigoriev A, Gunell H, Nilsson H, Sauvaud JA, Lundin R, Futaana Y, Holmström M, Andersson H, Yamauchi M, Winningham JD, Frahm RA, Sharber JR, Scherror J, Coates AJ, Linder DR, Kataria DO, Kallio E, Koskinen H, Säles T, Riihelä P, Schmidt W, Kozyra J, Luhmann J, Roelof E, Williams D, Livi S, Curtis CC, Hsieh KC, Sandel BR, Grande M, Carter M, Thocaven JJ, McKenna-Lawler S, Orsini S, Cerulli-Irelli R, Maggi M, Wurz P, Bochsler P, Krupp N, Woch J, Fränz M, Asamura K, Dierker C (2006) Mass composition of the escaping plasma at Mars. Icarus 182:320–328

    Article  Google Scholar 

  • Catling DC, Kasting JF (2017) Atmospheric evolution on inhabited and lifeless worlds. Cambridge University Press, UK

    Book  Google Scholar 

  • Chaffin MS, Chafray JY, Stewart I, Montmessin F, Schneider NM, Bertaux JL (2014) Unexpected variability of Martian hydrogen escape. Geophys Res Lett 41:314–320. https://doi.org/10.1002/2013GL058578

    Article  CAS  Google Scholar 

  • Chaffin MS, Deighan J, Schneider NM, Stewart AIF (2017) Elevated atmospheric escape of atomic hydrogen from Mars induced by high-altitude water. Nat Geosci 10(3):174–178

    Article  CAS  Google Scholar 

  • Chassefière E, Leblanc F (2004) Mars atmospheric escape and evolution; interaction with the solar wind. Planet Space Sci 52:1039–1058

    Article  Google Scholar 

  • Chassefière E, Leblanc F, Langlais B (2007) The combined effects of escape and magnetic field histories at Mars. Planet Space Sci 55:343–357

    Article  Google Scholar 

  • Christensen PR, Bandfield JL, Bell IIIJF, Gorelick N, Hamilton VE, Ivanov A, Jakosky BM, Kieffer HH, Lane MD, Malin MC, McConnochie T, McEwen AS, McSween HY Jr, Mehall GL, Moersch JE, Nealson KH, Rice JW Jr, Richardson MI, Ruff SW, Smith MD, Titus TN, Wyatt MB (2003) Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results. Science 300:2056

    Article  CAS  PubMed  Google Scholar 

  • Clarke JT, Bertaux JL, Chaufray JY, Gladstone GR, Quemerais E, Wilson JK, Bhattacharyya D (2014) A rapid decrease of the hydrogen corona of Mars. Geophys Res Lett 41:8013–8020. https://doi.org/10.1002/2014GL061803

    Article  CAS  Google Scholar 

  • Clarke JT, Mayyasi M, Bhattacharyya D, Schneider NM, McClintock WE, Deighan JI, Stewart AIF, Chaufray JY, Chaffin MS, Jain SK, Stiepen A, Crismani M, Holsclaw GM, Montmessin F, Jakosky BM (2017) Variability of D and H in the Martian upper atmosphere observed with the MAVEN IUVS echelle channel. J Geophys Res 122:2336–2344. https://doi.org/10.1002/2016JA23479

    Article  CAS  Google Scholar 

  • Craddock RA, Howard AD (2002) The case for rainfall on a warm, wet early Mars. J Geophys Res 107(E11):5111. https://doi.org/10.1029/2001JE001505

    Article  Google Scholar 

  • Donauhue TM (1995) Evolution of water reservoirs on Mars from D/H ratios in the atmosphere and crust. Nature 374:432–434. https://doi.org/10.1038/374432a0

    Article  Google Scholar 

  • Dubinin E, Fraenz M, Fedorov A, Lundin R, Edberg N, Duru F, Vaisberg O (2011) Ion energization and escape on Mars and Venus. Space Sci Rev 162:173–211. https://doi.org/10.1007/s11214-9831-7

    Article  CAS  Google Scholar 

  • Encrenaz T, Greathouse TK, Richter MJ, Bézard B, Fouchet T, Lefèvre F, Montmessin F, Forget F, Lebonnois S, Atreya SK (2008) Simultaneous mapping of H2O and H2O2 on Mars from infrared high-resolution imaging spectroscopy. Icarus 195:547–556

    Article  CAS  Google Scholar 

  • Encrenaz T, Greathouse TK, Lefèvre F, Montmessin F, Forget F, Fouchet T, DeWitt C, Richter MJ, Lacy JH, Bézard B, Atreya SK (2015) Seasonal variations of hydrogen peroxide and water vapor on Mars: further indications of heterogeneous chemistry. Astron Astrophys 578:A127. https://doi.org/10.1051/0004-6361/201425448

    Article  Google Scholar 

  • England SL, Liu G, Yiğit E, Mahaffy PR, Elrod M, Benna M, Nakagawa H, Terada N, Jakosky B (2017) MAVEN NGISM observations of atmospheric gravity waves in the Martian thermosphere. J Geophys Res 122:2310–2335. https://doi.org/10.1002/2016JA023475

    Article  Google Scholar 

  • Font S, Marzo GA (2010) Mapping the methane on Mars. Astron Astrophys:A51. https://doi.org/10.1051/0004-6361/200913178

    Article  Google Scholar 

  • Forget F, Wordsworth R, Millour E, Madeleine JB, Kerber L, Leconte J, Marcq E, Haberle RM (2013) 3D modeling of the early martian climate under a denser CO2 atmosphere: temperatures and CO2 ice clouds. Icarus 222:81–99

    Article  CAS  Google Scholar 

  • Formisano V, Atreya S, Encrenaz T, Ignatiev N, Giuranna M (2004) Detection of methane in the atmosphere of Mars. Science 306:1758. https://doi.org/10.1126/science.1101732

    Article  CAS  PubMed  Google Scholar 

  • Geminale A, Formisano V, Sindoni G (2011) Mapping methane in Martian atmosphere with PFS-MEX data. Planet Space Sci 59:137–148

    Article  CAS  Google Scholar 

  • Harnett EM, Winglee RM (2006) Three-dimensional multifluid simulations of ionospheric loss at Mars from nominal solar wind conditions to magnetic cloud events. J Geophys Res 111:A09213. https://doi.org/10.1029/2006JA011724

    Article  CAS  Google Scholar 

  • Head JW, Hiesinger H, Ivanov MA, Kreslavsky MA, Pratt S, Thomson BJ (1999) Possible ancient oceans on Mars: evidence from Mars orbiter laser altimeter data. Science 286:2134–2137. https://doi.org/10.1126/science.286.5447.2134

    Article  CAS  PubMed  Google Scholar 

  • Hu R, Kass DM, Ehlmann BL, Yung YL (2015) Tracing the fate of carbon and the atmospheric evolution of Mars. Nat Commun. https://doi.org/10.1038/ncooms10003

  • Hunter DM, McElroy MB (1970) Production and escape of hydrogen on Mars. J Geophys Res 75(31):5989

    Article  Google Scholar 

  • Imamura T, Watanabe A, Maejima Y (2016) Convective generation and vertical propagation of fast gravity waves on Mars: one- and two-dimensional modeling. Icarus 267:51–63

    Article  Google Scholar 

  • Jakosky BM, Slipski M, Benna M, Mahaffy P, Elrod M, Yelle R, Stone S, Alsaeed N (2017) Mars’ atmospheric history derived from upper-atmosphere measurements of 38Ar/36Ar. Science 355:1408–1410

    Article  CAS  PubMed  Google Scholar 

  • Jakosky BM, Brain D, Chaffin M, Curry S, Deighan J, Grebowsky J, Halekas J, Leblanc F, Lillis R, Luhmann JG, Andersson L, Andre N, Andrews D, Baird D, Baker D, Bell J, Benna M, Bhattacharyya D, Bougher S, Bowers C, Chamberlin P, Chaufray J-Y, Clarke J, Collinson G, Combi M, Connerney J, Connour K, Correira J, Crabb K, Crary F, Cravens T, Crismani M, Delory G, Dewey R, DiBraccio G, Dong C, Dong Y, Dunn P, Egan H, Elrod M, England S, Eparvier F, Ergun R, Eriksson A, Esman T, Espley J, Evans S, Fallows K, Fang X, Fillingim M, Flynn C, Fogle A, Fowler C, Fox J, Fujimoto M, Garnier P, Girazian Z, Groeller H, Gruesbeck J, Hamil O, Hanley KG, Hara T, Harada Y, Hermann J, Holmberg M, Holsclaw G, Houston S, Inui S, Jain S, Jolitz R, Kotova A, Kuroda T, Larson D, Lee Y, Lee C, Lefevre F, Lentz C, Lo D, Lugo R, Ma Y-J, Mahaffy P, Marquette ML, Matsumoto Y, Mayyasi M, Mazelle C, McClintock W, McFadden J, Medvedev A, Mendillo M, Meziane K, Milby Z, Mitchell D, Modolo R, Montmessin F, Nagy A, Nakagawa H, Narvaez C, Olsen K, Pawlowski D, Peterson W, Rahmati A, Roeten K, Romanelli N, Ruhunusiri S, Russell C, Sakai S, Schneider N, Seki K, Sharrar R, Shaver S, Siskind DE, Slipski M, Soobiah Y, Steckiewicz M, Stevens MH, Stewart I, Stiepen A, Stone S, Tenishev V, Terada N, Terada K, Thiemann E, Tolson R, Toth G, Trovato J, Vogt M, Weber T, Withers P, Xu S, Yelle R, Yiğit E, Zurek R (2018) Loss of the Martian atmosphere to space: present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus 315:146–157

    Article  CAS  Google Scholar 

  • Krasnopolsky VA (2012) Search for methane and upper limits to ethane and SO2 on Mars. Icarus 217(1):144–152

    Article  CAS  Google Scholar 

  • Kasting JF (1991) CO2 condensation and the climate of early Mars. Icarus 94:1–13

    Article  CAS  PubMed  Google Scholar 

  • Kasprzak WT, Hedin AE, Mayr HG, Niemann HB (1988) Wavelike perturbations observed in the neutral thermosphere of Venus. J Geophys Res 93:11237–11245

    Article  CAS  Google Scholar 

  • Khayat AS, Villanueva GL, Mumma MJ, Tokunaga AT (2015) A search for SO2, H2S and SO above Tharsis, and Syrtis volcanic districts on Mars using ground-based high-resolution submillimeter spectroscopy. Icarus 253:130–141

    Article  CAS  Google Scholar 

  • Korablev OI, Montmessin F, Fedorova AA, Ignatiev NI, Shakun AV, Trokhimovskiy AV, Grigoriev AV, Anufreichik KA, Kozlova TO (2015) ACS experiment for atmospheric studies on “ExoMars-2016” orbiter. Sol Syst Res 49(7):529–537

    Article  Google Scholar 

  • Krasnopolsky VA (2000) On the deuterium abundance on Mars and some related problems. Icarus 148:597–602. https://doi.org/10.1006/icar.2000.6534

    Article  CAS  Google Scholar 

  • Krasnopolsky VA, Mumma MJ, Gladstone GR (1998) Detection of atomic deuterium in the upper atmosphere of Mars. Science 280:1576

    Article  CAS  PubMed  Google Scholar 

  • Krasnopolsky VA, Maillard JP, Owen TC (2004) Detection of methane in the martian atmosphere: evidence for life? Icarus 172:537–547

    Article  CAS  Google Scholar 

  • Leblanc F, Witasse O, Winningham J, Brain D, Lilensten J, Blelly PL, Frahm RA, Halekas JS, Bertaux JL (2006) Origins of the Martian aurora observed by Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars (SPICAM) on board Mars express. J Geophys Res 111:A09313. https://doi.org/10.1029/2006JA0117632

    Article  Google Scholar 

  • Leblanc F, Modolo R, Curry S, Luhmann J, Lillis R, Chaufray JY, Hara T, McFadden J, Halekas J, Eparvier F, Larson D, Connerney J, Jakosky B (2015) Mars heavy ion precipitating flux as measured by Mars Atmosphere and Volatile EvolutioN. Geophys Res Lett 42:9135–9141. https://doi.org/10.1002/2015GL066170

    Article  CAS  Google Scholar 

  • Lefèvre F, Forget F (2009) Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature 460:720. https://doi.org/10.1038/nature08228

    Article  CAS  PubMed  Google Scholar 

  • Lillis RJ, Brain DA, Bougher SW, Leblanc F, Luhmann JG, Jakosky BM, Modolo R, Fox J, Deighan J, Fang X, Wang YC, Lee Y, Dong C, Ma Y, Cravens T, Andersson L, Curry SM, Schneider N, Combi M, Stewart I, Clarke J, Grebowsky J, Mitchell DL, Yelle R, Nagy AF, Baker D, Lin RP (2015) Space Sci Rev 195:357–422. https://doi.org/10.1007/s11214-0165-8

    Article  CAS  Google Scholar 

  • Luhmann JG, Johnson RE, Zhang MHG (1992) Evolutionary impact of sputtering of the martian atmosphere by O+ pickup ions. Geophys Res Let 19:2151–2154

    Article  CAS  Google Scholar 

  • Lundin R (2011) Ion acceleration and outflow from Mars and Venus: an overview. Space Sci Rev 162:309–334

    Article  CAS  Google Scholar 

  • Lundin R, Barabash S, Holmström M, Nilsson H, Yamauchi M, Dubinin EM, Fraenz M (2009) Geophys Res Lett 36:L17202. https://doi.org/10.1029/GL039341

    Article  Google Scholar 

  • Ma Y, Nagy AF, Sokolov IV, Hansen KC (2004) Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars. J Geophys Res 109:A07211. https://doi.org/10.1029/2003JA010367

    Article  CAS  Google Scholar 

  • Maltagliati L, Montmessin F, Fedorova A, Korablev O, Forget F, Bertaux JL (2011) Evidence of water vapor in excess of saturation in the atmosphere of Mars. Science 333:1868. https://doi.org/10.1126/science.1207957

    Article  CAS  PubMed  Google Scholar 

  • Maltagliati L, Montmessin F, Korablev O, Fedorova A, Forget F, Määttänen A, Lefèvre F, Bertaux JL (2013) Annual survey of water vapor vertical distribution and water-aerosol coupling in the martian atmosphere observed by SPICAM/MEx solar occultations. Icarus 223:942–962

    Article  CAS  Google Scholar 

  • Medvedev AS, Yiğit E (2012) Thermal effects of internal gravity waves in the Martian upper atmosphere. Geophys Res Lett 39:L05201. https://doi.org/10.1029/2012GL50852

    Article  Google Scholar 

  • Medvedev AS, Yiğit E, Hartogh P, Becker E (2011) Influence of gravity waves on the Martian atmosphere: general circulation modeling. J Geophys Res 116:E10004. https://doi.org/10.1029/2011JE003848

    Article  Google Scholar 

  • Medvedev AS, Nakagawa H, Mockel C, Yiğit E, Kuroda T, Hartogh P, Terada K, Terada N, Seki K, Schneider NM, Jain SK, Evans JS, Deighan JI, McClintock WE, Lo D, Jakosky BM (2016) Comparison of the Martian thermospheric density and temperature from IUVS/MAVEN data and general circulation modeling. Geophys Res Lett 43:3095–3104

    Article  CAS  Google Scholar 

  • Montmessin F, Fouchet T, Forget F (2005) Modeling the annual cycle of HDO in the Martian atmosphere. J Geophys Res 110:E03006. https://doi.org/10.1029/2004JE002357

    Article  CAS  Google Scholar 

  • Mumma M, Novak RE, DiSanti MA, Bonev BP (2003) Bulletin of the American Astronomical Society, 35, AAS/Division for Planetary Sciences Meeting Abstract#35, 937

    Google Scholar 

  • Mumma M, Villanueva GL, Novak RE, Hewagama T, Bonev BP, DiSanti MA, Mandell AM, Smith MD (2009) Strong release of methane on Mars in northern summer 2003. Science 323:1041. https://doi.org/10.1126/science.1165243

    Article  CAS  PubMed  Google Scholar 

  • Owen T (1992) In: Kieffer HH (ed) The composition and early history of the atmosphere of Mars. University of Arizona Press, Tucson

    Google Scholar 

  • Owen T, Maillard JP, Bergh C, Lutz BL (1988) Deuterium on Mars: the abundance of HDO and the value of D/H. Science 240(4860):1767. https://doi.org/10.1126/science.240.4860.1767

    Article  CAS  PubMed  Google Scholar 

  • Parker TJ, Gorsline DS, Saunders RS, Pieri DC, Schneeberger DM (1993) Coastal geomorphology of the martian Northern Plains. J Geophys Res 98:11061–11078

    Article  Google Scholar 

  • Pollack JB, Kasting JF, Richardson SM, Poliakoff K (1987) The case for a wet, warm climate on early Mars. Icarus 71(2):203–224

    Article  CAS  PubMed  Google Scholar 

  • Ramirez RM, Kopparapu R, Zugger ME, Robinson TD, Freedman R, Kasting JF (2014) Nat Geosci. https://doi.org/10.1038/NGE2000

  • Schneider NM, Deighan JI, Jain SK, Stiepen A, Stewart AIF, Larson D, Mitchell DL, Mazelle C, Lee CO, Lillis RJ, Evans JS, Brain D, Stevens MH, McClintock WE, Chaffin MS, Crismani M, Holsclaw GM, Lefèvre F, Lo DY, Clarke JT, Montmessin F, Jakosky BM (2015) Discovery of diffuse aurora on Mars. Science 350:aad0313–aad0311

    Article  CAS  PubMed  Google Scholar 

  • Shizgal BD, Arkos GG (1996) Nonthermal escape of the atmospheres of Venus, Earth, and Mars. Rev Geophys 34:483–505

    Article  CAS  Google Scholar 

  • Som SM, Catling DC, Harnmeijer JP, Polivka PM, Buick R (2012) Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints. Nature 484:359. https://doi.org/10.1038/nature10890

    Article  CAS  PubMed  Google Scholar 

  • Terada N, Leblanc F, Nakagawa H, Medvedev AS, Yiğit E, Kuroda T, Hara T, England SL, Fujiwara H, Terada K, Seki K, Mahaffy PR, Elrod M, Benna M, Grebowsky J, Jakosky BM (2017) Global distribution and parameter dependences of gravity wave activity in the Martian upper thermosphere derived from MAVEN/NGISM observations. J Geophys Res 122:2374–2397. https://doi.org/10.1002/2016JA023476

    Article  Google Scholar 

  • Vandaele AC, Neefs E, Drummond R, Thomas IR, Daerden F, Lopez-Moreno JL, Rodriguez J, Patel MR, Bellucci G, Allen M, Altieri F, Bolsée D, Clancy T, Delanoye S, Depiesse C, Cloutis E, Fedorova A, Formisano V, Funke B, Fussen D, Geminale A, Gérard JC, Giuranna M, Ignatiev N, Kaminski J, Karatekin O, Lefèvre F, López-Puertas M, López-Valverde M, Mahieux A, McConnell J, Mumma M, Neary L, Renotte E, Ristic B, Robert S, Smith M, Trokhimovsky S, Vander Auwera J, Villanueva G, Whiteway J, Wilquet V, Wolff M (2015) The NOMAD Team, science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission. Planet Space Sci 119:233–249

    Article  Google Scholar 

  • Villanueva GL, Mumma MJ, Novak RE, Radeva YL, Käufl HU, Smette A, Tokunaga A, Khayat A, Encrenaz T, Hartogh P (2013) A sensitive search for organics (CH4, CH3OH, H2CO, C2H6, C2H2, C2H4), hydroperoxyl (HO2), nitrogen compounds (N2O, NH3, HCN) and chlorine species (HCl, CH3Cl) on Mars using ground-based high-resolution infrared spectroscopy. Icarus 223:11–27

    Article  CAS  Google Scholar 

  • Villanueva GL, Mumma MJ, Novak RE, Käufl HU, Hartogh P, Encrenaz T, Tokunaga A, Khayat A, Smith MD (2015) Strong wáter isotopic anomalies in the martian atmosphere: probing current and ancient reservoirs. Science. https://doi.org/10.1126/science.aaa3630

    Article  CAS  PubMed  Google Scholar 

  • Webster CR, Mahaffy PR, Flesch GJ, Niles PB, Jones JH, Leshin LA, Atreya SK, Stern JC, Christensen LE, Owen T, Franz H, Pepin RO, Steele A (2013) The MSL Science Team, isotope ratios of H, C, and O in CO2 and H2O of the Martian atmosphere. Science 341:260. https://doi.org/10.1126/science.1237961

    Article  CAS  PubMed  Google Scholar 

  • Webster CR, Mahaffy PR, Atreya SK, Flesch GJ, Mischna MA, Meslin PY, Farley KA, Conrad PG, Christensen LE, Pavlov AA, Martin-Torres J, Zorzano MP, McConnochie TH, Owen T, Eigenbrode JL, Glavin DP, Steele A, Malespin CA, Archer PD Jr, Sutter B, Coll P, Freissiet C, McKay CP, Moores JE, Schwenzer SP, Bridges JC, Navarro-Gonzalez R, Gellert R, Lemmon MT, the MSL Science Team (2014) Mars methane detection and variability at Gale crater. Science. https://doi.org/10.1126/science/1261713

  • Wordsworth R, Forget F, Millour E, Head JW, Madeleine J-B, Charnay B (2013) Global modelling of the early martian climate under a denser CO2 atmosphere: water cycle and ice evolution. Icarus 222(1):1–19

    Article  CAS  Google Scholar 

  • Wordsworth RD, Kerber L, Pierrehumbert RT, Forget F, Head JW (2015) Comparison of “warm and wet” and “cold and icy” scenarios for early Mars in a 3-D climate model. J Geophys Res 120:1201–1219. https://doi.org/10.1002/2015JE004787

    Article  Google Scholar 

  • Wordsworth R, Kalugina Y, Lokshtanov S, Vigasin A, Ehlmann B, Head J, Sanders C, Wang H (2017) Transient reducing greenhouse warming on early Mars. Geophys Res Lett 44:665–671. https://doi.org/10.1002/2016GL071766

    Article  CAS  Google Scholar 

  • Zahnle K (2015) Play it again. SAM Sci 347:370

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromu Nakagawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakagawa, H. (2019). Atmosphere of Mars. In: Yamagishi, A., Kakegawa, T., Usui, T. (eds) Astrobiology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3639-3_22

Download citation

Publish with us

Policies and ethics