Skip to main content

Limits of Terrestrial Life and Biosphere

  • Chapter
  • First Online:
Astrobiology

Abstracts

The origin, evolution, and distribution of life in the Universe can be better addressed by understanding the limits of life on Earth. A broad range of physical and chemical constraints for limits of life, such as temperature, pressure, pH, salinity, physical space, water content, and availability of energy and nutrients, have been explored in many environments of the Earth that potentially host certain boundaries between the habitable and the uninhabitable terrains. In this chapter, the presently known limits of life are described, and the possible environments and their physical and chemical characteristics that could signify the limits of life and biosphere on the Earth are reviewed. Although the nature and distribution of fringe biospheres that face the boundaries are highly unknown, numerous geomicrobiological explorations have demonstrated the limits of biosphere realistically occur in the subsurface environments and are controlled by certain boundary conditions. Energetic aspects of boundary conditions are quite important and are discussed based on the theoretical estimations and field observations of earthly life and biosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antunes A, Taborda M, Huber R, Moissl C, Nobre MF, da Costa MS (2008) Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus. Int J Syst Evol Microbiol 58:215–220

    CAS  PubMed  Google Scholar 

  • Antunes A, Ngugi DK, Stingl U (2011) Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ Microbiol Rep 3:416–433

    PubMed  Google Scholar 

  • Aoyama S, Nishizawa M, Takai K, Ueno Y (2014) Microbial sulfate reduction within the Iheya North subseafloor hydrothermal system constrained by quadruple sulfur isotopes. Earth Planet Sci Lett 398:113–126

    CAS  Google Scholar 

  • Aoyama S, Nishizawa M, Miyazaki J, Shibuya T, Ueno Y, Takai K (2018) Recycled Archean sulfur in the mantle wedge of the Mariana Forearc and microbial sulfate reduction within an extremely alkaline serpentine seamount. Earth Planet Sci Lett 491:109–120

    CAS  Google Scholar 

  • Battista JR (1997) Against all odds: the survival strategies of Deinococcus radiodurans. Ann Rev Microbiol 51:203–224

    CAS  Google Scholar 

  • Belliaev GM, Brueggeman PL (1989) Deep sea ocean trenches and their Fauna. Scripps Institution of Oceanography Technical Report, Scripps Institution of Oceanography, UC San Diego

    Google Scholar 

  • Binns RA, Barriga FJAS, Miller DJ, Shipboard Scientific Party (2002) Proc ODP Init Rep 193. doi:https://doi.org/10.2973/odp.proc.ir.193.2002

  • Bischoff JL, Pitzer KS (1989) Liquid-vapor relations for the system NaCl-H2O; summary of the P-T-x surface from 300 degrees to 500 degrees C. Am J Sci 289:217–248

    CAS  Google Scholar 

  • Bischoff JL, Rosenbauer RJ (1988) Liquid-vapor relations in the critical region of the system NaCl-H2O from 380 to 415 °C: a refined determination of the critical point and two-phase boundary of seawater. Geochim Cosmochim Acta 52:2121–2126

    CAS  Google Scholar 

  • Blackman DK, Ildefonse B, John BE, Ohara Y, Miller DJ, MacLeod CJ, The Expedition 304/305 Scientists (2006) Proc IODP Exp 304/305. doi:https://doi.org/10.2204/iodp.proc.304305.101.2006

  • Butterfield DA, Nakamura K, Takano B, Lilley MD, Lupton JE, Resing JA, Roe KK (2011) High SO2 flux, sulfur accumulation, and gas fractionation at an erupting submarine volcano. Geology 39:803–806

    CAS  Google Scholar 

  • Charmasson S, Sarradin PM, Le Faouder A, Agarande M, Loyen J, Desbruyeres D (2009) High levels of natural radioactivity in biota from deep-sea hydrothermal vents: a preliminary communication. J Environ Radioact 100:522–526

    CAS  PubMed  Google Scholar 

  • Ciobanu MC, Burgaud G, Dufresne A, Breuker A, Redou V, Maamar SB, Gaboyer F, Vandenabeele-Trambouze O, Lipp JS, Schippers A, Vandenkoornhuyse P, Barbier G, Jebbar M, Godfroy A, Alain K (2014) Microorganisms persist at record depths in the subseafloor of the Canterbury Basin. ISME J 8:1370–1380

    PubMed  PubMed Central  Google Scholar 

  • Cockell CS (2000) Ultraviolet radiation and the photobiology of Earth’s early oceans. Orig Life Evol Biosph 30:467–500

    CAS  PubMed  Google Scholar 

  • Cragg BA, Parkes RJ (1994) Bacterial profiles in hydrothermally active deep sediment layers from Middle Valley (NE Pacific), Sites 857 and 858. Proc ODP Sci Results 139:509–516

    CAS  Google Scholar 

  • Cragg BA, Summit M, Parkes RJ (2000) Bacterial profiles in a sulfide mound (Site 1035) and an area of active fluid venting (Site 1036) in hot hydrothermal sediments from Middle Valley (Northeast Pacific). Proc ODP Sci Result 169. doi:https://doi.org/10.2973/odp.proc.sr.169.105.2000

    Google Scholar 

  • D’Elia T, Veerapaneni R, Rogers SO (2008) Isolation of microbes from Lake Vostok accretion ice. Appl Environ Microbiol 74:4962–4965

    PubMed  PubMed Central  Google Scholar 

  • D’Hondt S, Inagaki F, Zarikian CA, Abrams LJ, Dubois N, Engelhardt T, Evans H, Ferdelman T, Gribsholt B, Harris R, Hoppie BW, Hyun JH, Kallmeyer J, Kim J, Lynch JE, McKinley CC, Mitsunobu S, Morono Y, Murray RW, Pockalny R, Sauvage J, Shimono T, Shiraishi F, Smith DC, Smith-Duque CE, Spivack AJ, Steinsbu BO, Suzuki Y, Szpak M, Toffin L, Uramoto G, Yamaguchi Y, Zhang GL, Zhang XH, Ziebis W (2015) Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments. Nat Geosci 8:299–304

    Google Scholar 

  • Dalmasso C, Oger P, Selva G, Courtine D, L’Haridon S, Garlaschelli A, Roussel E, Miyazaki J, Reveillaud J, Jebbar M, Takai K, Maignien L, Alain K (2016) Thermococcus piezophilus sp. nov., a novel hyperthermophilic and piezophilic archaeon with a broad pressure range for growth, isolated from a deepest hydrothermal vent at the Mid-Cayman Rise. Syst Appl Microbiol 39:440–444

    CAS  PubMed  Google Scholar 

  • Darrah TH, Tedesco D, Tassi F, Vaselli O, Cuoco E, Poreda RJ (2013) Gas chemistry of the Dallol region of the Danakil Depression in the Afar region of the northern-most East African Rift. Chem Geol 339:16–29

    CAS  Google Scholar 

  • Dartnell LR (2011) Ionizing radiation and life. Astrobiology 11:551–582

    CAS  PubMed  Google Scholar 

  • Davis EE, Mottl MJ, Fisher AT, Shipboard Scientific Party (1992) Proc ODP Init Rep 139. doi:https://doi.org/10.2973/odp.proc.ir.139.1992

  • Doemel WN, Brock TD (1971) The physiological ecology of Cyanidium caldarium. J Gen Microbiol 67:17–32

    Google Scholar 

  • Eder W, Ludwig W, Huber R (1999) Novel 16S rRNA gene sequences retrieved from highly saline brine sediments of Kebrit Deep, Red Sea. Arch Microbiol 172:213–218

    CAS  PubMed  Google Scholar 

  • Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1796–1799

    CAS  PubMed  Google Scholar 

  • Elsgaard L, Prieur D (2011) Hydrothermal vents in Lake Tanganyika harbor spore-forming thermophiles with extremely rapid growth. J Great Lakes Res 37:203–206

    CAS  Google Scholar 

  • Fouquet Y, Zierenberg RA, Miller DJ, Shipboard Scientific Party (1998) Proc ODP Init Rep 169. doi:https://doi.org/10.2973/odp.proc.ir.169.1998

  • Fukuda R, Ogawa H, Nagata T, Koike I (1998) Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl Environ Microbiol 64:3352–3358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glud RN, Wenzhöfer F, Middelboe M, Oguri K, Turnewitsch R, Canfield DE, Kitazato H (2013) High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat Geosci 6:284–288

    CAS  Google Scholar 

  • Gomez P, Garralon A, Buil B, Turrero MJ, Sanchez L, de la Cruz B (2006) Modeling of geochemical processes related to uranium mobilization in the groundwater of a uranium mine. Sci Total Environ 366:295–309

    CAS  PubMed  Google Scholar 

  • Heijnen JJ, van Dijken JP (1992) In search of a thermodynamic description of biomass yield for the chemotrophic growth of microorganisms. Biotechnol Bioeng 39:833–858

    CAS  PubMed  Google Scholar 

  • Heuer VB, Inagaki F, Morono Y, Kubo Y, Maeda L, the IODP Exp 370 Onboard scientists (2017) Expedition 370 preliminary report: temperature limit of the deep biosphere off Muroto. International Ocean Discovery Program. doi:https://doi.org/10.14379/iodp.pr.370.2017

  • Hoehler TM (2007) An energy balance concept for habitability. Astrobiology 7:824–838

    CAS  PubMed  Google Scholar 

  • Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horneck G, Rettberg P, Reitz G, Wehner J, Eschweiler U, Strauch K, Verena CP, Baumstark-Khan C (2001) Protection of bacterial spores in space, a contribution to the discussion on panspermia. Orig Life Evol Biosph 31:527–547

    CAS  PubMed  Google Scholar 

  • Humphris SE, Herzig PM, Miller DJ, Shipboard Scientific Party (1996) Proc ODP Init Rep 158. doi:https://doi.org/10.2973/odp.proc.ir.158.1996

  • Imshenetsky AA, Lysenko SV, Kazakov GA, Ramkova NV (1976) On micro-organisms of the stratosphere. Life Sci Space Res 14:359–362

    CAS  PubMed  Google Scholar 

  • Inagaki F, Hinrichs KU, Kubo Y, Bowles MW, Heuer VB, Hong WL, Hoshino T, Ijiri A, Imachi H, Ito M, Kaneko M, Lever M, Lin YS, Methé BA, Morita S, Morono Y, Tanikawa W, Bihan M, Bowden S, Elvert M, Glombitza C, Gross D, Harrington GJ, Hori T, Li K, Limmer D, Liu CH, Murayama M, Ohkouchi N, Ono S, Park YS, Phillips SC, Prieto-Mollar X, Purkey M, Riedinger N, Sanada Y, Sauvage J, Snyder G, Susilawati R, Takano Y, Tasumi E, Terada T, Tomaru H, Trembath-Reichert E, Wang DT, Yamada Y (2015) Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor. Science 349:420–424

    CAS  PubMed  Google Scholar 

  • Jackson BE, McInerney MJ (2002) Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415:454–456

    CAS  PubMed  Google Scholar 

  • Jamieson AJ, Malkocs T, Piertney SB, Fujii T, Zhang Z (2017) Bioaccumulation of persistent organic pollutants in the deepest ocean fauna. Nature Ecol Evol 1:0051

    Google Scholar 

  • Jensen KA, Ewing RC (2001) The Okélobondo natural fission reactor, southeast Gabon: geology, mineralogy, and retardation of nuclear-reaction products. GSA Bull 113:32–62

    CAS  Google Scholar 

  • Jolivet E, Corre E, L’Haridon S, Forterre P, Prieur D (2003) Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. Int J Syst Evol Microbiol 53:847–851

    CAS  PubMed  Google Scholar 

  • Jolivet E, Corre E, L’Haridon S, Forterre P, Prieur D (2004) Thermococcus marinus sp. nov. and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation. Extremophiles 8:219–227

    CAS  PubMed  Google Scholar 

  • Kato C, Li L, Tamaoka J, Horikoshi K (1997) Molecular analyses of the sediment of the 11,000-m deep Mariana Trench. Extremophiles 1:117–123

    CAS  PubMed  Google Scholar 

  • Kawagucci S, Miyazaki J, Morono Y, Seewald JS, Wheat G, Takai K (2018) Cool and alkaline serpentinite formation fluid regime with scarce microbial habitability and possible abiotic synthesis beneath the South Chamorro Seamount. Proc Earth Planet Sci 5:1–20

    Google Scholar 

  • Kelley DS, Karson JA, Blackman DK, Fruh-Green GL, Butterfield DA, Lilley MD, Olson EJ, Schrenk MO, Roe KK, Lebon GG, Rivizzigno P (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N. Nature 412:145–149

    CAS  PubMed  Google Scholar 

  • Kelley DS, Karson JA, Fruh-Green GL, Yoerger DR, Shank TM, Butterfield DA, Hayes JM, Schrenk MO, Olson EJ, Proskurowski G, Jakuba M, Bradley A, Larson B, Ludwig K, Glickson D, Buckman K, Bradley AS, Brazelton WJ, Roe K, Elend MJ, Delacour A, Bernasconi SM, Lilley MD, Baross JA, Summons RE, Sylva SP (2005) A serpentinite-hosted ecosystem: the lost city hydrothermal field. Science 307:1428–1434

    CAS  PubMed  Google Scholar 

  • Kimura H, Asada R, Masta A, Naganuma T (2003) Distribution of microorganisms in the subsurface of the manus basin hydrothermal vent field in Papua New Guinea. Appl Environ Microbiol 69:644–648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klotz B, Pyle DL, Mackey BM (2007) New mathematical modeling approach for predicting microbial inactivation by high hydrostatic pressure. Appl Environ Microbiol 73:2468–2478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi H, Hatada Y, Tsubouchi T, Nagahama T, Takami H (2012) The hadal amphipod Hirondellea gigas possessing a unique cellulase for digesting wooden debris buried in the deepest seafloor. PLoS One 7:e42727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koschinsky A, Garbe-Schönberg D, Sander S, Schmidt K, Gennerich HH, Strauss H (2008) Hydrothermal venting at pressure-temperature conditions above the critical point of seawater, 5°S on the Mid-Atlantic Ridge. Geology 36:615–618

    CAS  Google Scholar 

  • Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature 400:652–655

    CAS  Google Scholar 

  • Kusube M, Kyaw TS, Tanikawa K, Chastain RA, Hardy KM, Cameron J, Bartlett DH (2017) Colwellia marinimaniae sp. nov., a hyperpiezophilic species isolated from an amphipod within the Challenger Deep, Mariana trench. Int J Syst Evol Microbiol 67:824–831

    CAS  PubMed  Google Scholar 

  • LaRowe DE, Amend JP (2015) Catabolic rates, population sizes and doubling/replacement times of microorganisms in natural settings. Am J Sci 315:167–203

    CAS  Google Scholar 

  • Margosch D, Ehrmann MA, Buckow R, Heinz V, Vogel RF, Gänzle MG (2006) High-pressure-mediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature. Appl Environ Microbiol 72:3476–3481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mason OU, Nakagawa T, Rosner M, Van Nostrand JD, Zhou J, Maruyama A, Fisk MR, Giovannoni SJ (2010) First investigation of the microbiology of the deepest layer of ocean crust. PLoS One 5:e15399

    PubMed  PubMed Central  Google Scholar 

  • McCollom TM, Amend JP (2005) A thermodynamic assessment of energy requirements for biomass synthesis by chemolithoautotrophic micro-organisms in oxic and anoxic environments. Geobiology 3:135–144

    CAS  Google Scholar 

  • McCollom TM, Bach W (2009) Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim Cosmochim Acta 73:856–875

    CAS  Google Scholar 

  • Méndez-García C, Peláez AI, Mesa V, Sánchez J, Golyshina OV, Ferrer M (2015) Microbial diversity and metabolic networks in acid mine drainage habitats. Front Microbiol 6:475

    PubMed  PubMed Central  Google Scholar 

  • Minton KW (1994) DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol Microbiol 13:9–15

    CAS  PubMed  Google Scholar 

  • Morono Y, Terada T, Nishizawa M, Ito M, Hillion F, Takahata N, Sano Y, Inagaki F (2012) Carbon and nitrogen assimilation in deep subseafloor microbial cells. Proc Natl Acad Sci U S A 108:18295–18300

    Google Scholar 

  • Mottl MJ (2009) Highest pH. Geochem News 141:09

    Google Scholar 

  • Mottl MJ, Komor SC, Fryer P, Moyer CL (2003) Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: ocean Drilling Program Leg 195. Geochem Geophys Geosyst 4:11

    Google Scholar 

  • Nakagawa T, Takai K, Suzuki Y, Hirayama H, Konno U, Tsunogai U, Horikoshi K (2006) Geomicrobiological exploration and characterization of a novel deep-sea hydrothermal system at the TOTO caldera in the mariana Volcanic Arc. Environ Microbiol 8:37–49

    CAS  PubMed  Google Scholar 

  • Nakamura K, Takai K (2014) Theoretical constraints of physical and chemical properties of hydrothermal fluids on variations in chemolithotrophic microbial communities in seafloor hydrothermal systems. Prog Earth Planet Sci 1:5

    Google Scholar 

  • Nakamura K, Takai K (2015) Geochemical constraints on potential biomass sustained by subseafloor water–rock interactions. In: Ishibashi J, Okino K, Sunamura M (eds) Subseafloor biosphere linked to hydrothermal systems. Springer Japan, Tokyo, pp 11–30

    Google Scholar 

  • Nordstrom DK, Alpers CN, Ptacek CJ, Blowes DW (2000) Negative pH and extremely acidic mine waters from Iron Mountain, California. Environ Sci Tech 34:254–258

    CAS  Google Scholar 

  • Nunoura T, Takaki Y, Hirai M, Shimamura S, Makabe A, Koide O, Kikuchi T, Miyazaki J, Koba K, Yoshida N, Sunamura M, Takai K (2015) Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on Earth. Proc Natl Acad Sci U S A 112:E1230–E1236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olsson-Francis K, Cockell CS (2010) Experimental methods for studying microbial survival in extraterrestrial environments. J Microbiol Methods 80:1–13

    CAS  PubMed  Google Scholar 

  • Pedersen K, Nilsson E, Arlinger J, Hallbeck L, O’Neill A (2004) Distribution, diversity and activity of microorganisms in the hyper-alkaline spring waters of Maqarin in Jordan. Extremophiles 8:151–164

    CAS  PubMed  Google Scholar 

  • Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci U S A 101:4631–4636

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rainy FA, Oren A (2006) Extremophile microorganisms and the method to handle them, Method Microbiol vol 35 Extremophiles. Elsevier, London

    Google Scholar 

  • Resing JA, Lebon G, Baker ET, Lupton JE, Embley RW, Massoth GJ, Chadwick WW, de Ronde CEJ (2007) Venting of acid-sulfate fluids in a high-sulfidation setting at NW rota-1 submarine volcano on the Mariana Arc. Econ Geol 102:1047–1061

    CAS  Google Scholar 

  • Reysenbach AL, Holm NG, Hershberger K, Prieur D, Jeanthon C (1998) In search of a subsurface biosphere at a slow-spreading ridge. Proc ODP Sci Results 158:355–365

    CAS  Google Scholar 

  • Reysenbach AL, Liu Y, Banta AB, Beveridge TJ, Kirshtein JD, Schouten S, Tivey MK, Vom Domm KL, Voytek MA (2006) A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents. Nature 442:444–447

    CAS  PubMed  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    CAS  PubMed  Google Scholar 

  • Roussel EG, Cambon Bonavita MA, Querellou J, Cragg BA, Webster G, Prieur D, Parkes RJ (2008) Extending the sub-sea-floor biosphere. Science 320:1046

    CAS  PubMed  Google Scholar 

  • Rowe GL, Brantley SL, Fernandez M, Fernandez JF, Borgia A, Barquero J (1992) Fluid-volcano interaction in an active stratovolcano: the crater lake system of Poás volcano, Costa Rica. J Volcanol Geotherm Res 49:23–51

    CAS  Google Scholar 

  • Russell JB, Cook GM (1995) Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiol Rev 59:48–62

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salisbury MH, Shinohara M, Richter C, Shipboard Scientific Party (2002) Proc ODP Init Rep 195. doi:https://doi.org/10.2973/odp.proc.ir.195.2002

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schleper C, Pühler G, Kühlmorgen B, Zillig W (1995) Life at extremely low pH. Nature 375:741–742

    CAS  PubMed  Google Scholar 

  • Schrenk MO, Brazelton WJ, Lang SQ (2013) Serpentinization, carbon, and deep life. Rev Mineral Geochem 75:575–606

    CAS  Google Scholar 

  • Schuster M, Dachev T, Richter P, Häder DP (2012) R3DE: radiation risk radiometer-dosimeter on the International Space Station—optical radiation data recorded during 18 months of EXPOSE-E exposure to open space. Astrobiology 12:393–402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seyfried WE Jr, Ding K, Berndt ME (1991) Phase equilibria constraints on the chemistry of hot spring fluids at mid-ocean ridges. Geochim Cosmochim Acta 55:3559–3580

    CAS  Google Scholar 

  • Shahbazi-Gahrouei D, Gholami M, Setayandeh S (2013) A review on natural background radiation. Adv Biomed Res 2:65

    PubMed  PubMed Central  Google Scholar 

  • Shock EL (1992) Chemical environments of submarine hydrothermal systems. Orig Life Evol Biosph 22:67–107

    CAS  PubMed  Google Scholar 

  • Spiess FN, RISE Group (1980) East Pacific Rise; hot springs and geophysical experiments. Science 297:1421–1433

    Google Scholar 

  • Swallow JC, Crease J (1965) Hot salty water at the bottom of the Red Sea. Nature 205:165–166

    CAS  Google Scholar 

  • Takai K (2011) Limits of life and the biosphere: lessons from the detection of microorganisms in the deep-sea and deep subsurface of the Earth. In: Gargaud M, Lopez-Garcia P, Martin H (eds) Origins and evolution of life – an astrobiological perspective. Cambridge University Press, Cambridge, UK, pp 469–486

    Google Scholar 

  • Takai K, Nakamura K (2011) Archaeal diversity and community development in deep-sea hydrothermal vents. Curr Opin Microbiol 14:282–291

    PubMed  Google Scholar 

  • Takai K, Inoue A, Horikoshi K (1999) Thermaerobacter marianensis gen. nov., sp. nov., an aerobic extremely thermophilic marine bacterium from the 11,000 m deep Mariana Trench. Int J Syst Bacteriol 49:619–628

    CAS  PubMed  Google Scholar 

  • Takai K, Komatsu T, Inagaki F, Horikoshi K (2001a) Distribution and colonization of archaea in a black smoker chimney structure. Appl Environ Microbiol 67:3618–3629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takai K, Moser DP, Onstott TC, Spoelstra N, Pfiffner SM, Dohnalkova A, Fredrickson JK (2001b) Alkaliphilus transvaalensis gen. nov., sp. nov., an extremely alkaliphilic bacterium isolated from a deep South African gold mine. Int J Syst Evol Microbiol 51:1245–1256

    CAS  PubMed  Google Scholar 

  • Takai K, Gamo T, Tsunogai U, Nakayama N, Hirayama H, Nealson KH, Horikoshi K (2004) Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field. Extremophiles 8:269–282

    CAS  PubMed  Google Scholar 

  • Takai K, Moyer CL, Miyazaki M, Nogi Y, Hirayama H, Nealson KH, Horikoshi K (2005) Marinobacter alkaliphilus sp. nov., a novel alkaliphilic bacterium isolated from subseafloor alkaline serpentine mud from Ocean Drilling Program (ODP) Site 1200 at South Chamorro Seamount, Mariana Forearc. Extremophiles 9:17–27

    CAS  PubMed  Google Scholar 

  • Takai K, Nakamura K, Toki T, Tsunogai T, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008a) Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high pressures cultivation. Proc Natl Acad Sci U S A 105:10949–10954

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takai K, Nunoura T, Ishibashi J, Lupton J, Suzuki R, Hamasaki H, Ueno Y, Kawagucci S, Gamo T, Suzuki Y, Hirayama H, Horikoshi K (2008b) Variability in the microbial communities and hydrothermal fluid chemistry at the newly discovered Mariner hydrothermal field, southern Lau Basin. J Geophys Res 113:G02031

    Google Scholar 

  • Takai K, Mottl MJ, Nielsen SH, The Expedition 331 Scientists (2011) Proc IODP Exp 331. doi:https://doi.org/10.2204/iodp.proc.331.2011 doi:https://doi.org/10.2204/iodp.proc.331.2011

  • Takai K, Nakamura K, LaRowe D, Amend JP (2014) Chapter 2.4 – Life at subseafloor extremes. In: Stein R, Blackman D, Inagaki F, Larsen HC (eds) Earth and life processes discovered from subseafloor environments a decade of science achieved by the Integrated Ocean Drilling Program (IODP), Dev Mar Geol 7. Elsevier, Amsterdam, pp 149–174

    Google Scholar 

  • Takami H, Inoue A, Fuji F, Horikoshi K (1997) Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol Lett 152:279–285

    CAS  PubMed  Google Scholar 

  • Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the Archea. Nat Rev Microbiol 5:316–323

    CAS  PubMed  Google Scholar 

  • Von Damm KL (1995) Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions, Geophysical Monograph 91. American Geophysical Union, Washington, DC, pp 222–247

    Google Scholar 

  • Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897–900

    CAS  PubMed  Google Scholar 

  • Wilcock WSD, Fisher AT (2004) Geophysical constraints on the subseafloor environment near Mid-Ocean Ridge. In: Wilcock WSD, Delong EF, Kelley DS, Baross JA, Cary SC (eds) The subseafloor biosphere at mid-ocean ridges, Geophysical Monograph 144. American Geophysical Union, Washington, DC, pp 51–74

    Google Scholar 

  • Yanagawa K, Ijiri A, Breuker A, Sakai S, Miyoshi Y, Kawagucci S, Noguchi T, Hirai M, Schippers A, Ishibashi J, Takaki Y, Sunamura M, Urabe T, Nunoura T, Takai K (2017) Defining boundaries for the distribution of microbial communities beneath the sediment-buried, hydrothermally active seafloor. ISME J 11:529–542

    PubMed  Google Scholar 

  • Yayanos AA (1986) Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. Proc Natl Acad Sci U S A 83:9542–9546

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Takai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takai, K. (2019). Limits of Terrestrial Life and Biosphere. In: Yamagishi, A., Kakegawa, T., Usui, T. (eds) Astrobiology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3639-3_20

Download citation

Publish with us

Policies and ethics