Skip to main content
Book cover

Astrobiology pp 273–301Cite as

End-Paleozoic Mass Extinction: Hierarchy of Causes and a New Cosmoclimatological Perspective for the Largest Crisis

  • Chapter
  • First Online:

Abstract

The largest mass extinction in the Phanerozoic occurred at the boundary between the Paleozoic and Mesozoic eras (about 252 million years ago). The end-Paleozoic extinction that determined the fate of modern animals including human beings occurred in two steps: first around the Middle-Late Permian boundary (G-LB) and then at the Permian-Triassic boundary (P-TB). Biological and non-biological aspects unique to these two distinct events include changes in biodiversity, isotope ratios (C, Sr, etc.) of seawater, sea level, ocean redox state, episodic volcanism, and geomagnetism. This article reviews possible causes proposed for the double-stepped extinction in regard to the current status of mass extinction studies. Causes of extinction can be grouped into four categories in hierarchy, from small to large scale, i.e., Category 1, direct kill mechanism; Category 2, global environmental change; Category 3, trigger on the planet’s surface; and Category 4, ultimate cause. As the G-LB and end-Ordovician extinctions share multiple similar episodes including the appearance of global cooling (Category 2), the same cause and processes were likely responsible for the biodiversity drop. In addition to the most prevalent scenario of mantle plume-generated large igneous provinces (LIPs) (Category 3) for the end-Permian extinction, an emerging perspective of cosmoclimatology is introduced with respect to astrobiology. Galactic cosmic radiation (GCR) and solar/terrestrial responses in magnetism (Category 4) could have had a profound impact on the Earth’s climate, in particular on extensive cloud coverage (irradiance shutdown). The starburst events detected in the Milky Way Galaxy apparently coincide in timing with the cooling-associated major extinctions of the Phanerozoic and also with the Proterozoic snowball Earth episodes. As an ultimate cause (Category 4) for major extinction, the episodic increase in GCR-dust flux from the source (dark clouds derived from starburst) against the geomagnetic shield likely determined the major climate changes, particularly global cooling in the past. The study of mass extinctions on Earth is entering a new stage with a new astrobiological perspective.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Algeo TJ, Kuwahara K, Sano H, Bates S, Lyons T, Elswick E, Hinnov L, Ellwood B, Moser J, Maynard JB (2011) Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian–Triassic Panthalassic Ocean. Palaeogeogr Palaeoclimatol Palaeoecol 308:65–83

    Article  Google Scholar 

  • Alroy J, Aberhan M, Bottjer DJ et al (2008) Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97–100

    Article  CAS  PubMed  Google Scholar 

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction: experimental results and theoretical interpretation. Science 208:1095–1108

    Article  CAS  PubMed  Google Scholar 

  • Bambach RK (2006) Phanerozoic biodiversity mass extinctions. Ann Rev Earth Planet Sci 34:127–155

    Article  CAS  Google Scholar 

  • Benton MJ, Newell AJ (2014) Impacts of global warming on Permo-Triassic terrestrial ecosystems. Gondwana Res 25:1308–1337

    Article  Google Scholar 

  • Baumiller TK, Messing CG (2007) Stalked crinoid locomotion, and its ecological and evolutionary implications. Palaeontol Electron 10:1–10

    Google Scholar 

  • Becker L, Podera R, Hunt AG, Bunch TE, Rampino M (2001) Impact event at the Permian-Triassic boundary: evidence from extraterrestrial noble gases in fullerenes. Science 291:1530–1533

    Article  CAS  PubMed  Google Scholar 

  • Belica ME, Tohver E, Pisarevsky SA, Jourdan F, Denyszyn S, George AD (2017) Middle Permian paleomagnetism of the Sydney Basin, eastern Gondwana: testing Pangea models and the timing of the end of the Kiaman Reverse Superchron. Tectonophysics 699:178–198

    Article  CAS  Google Scholar 

  • Berner RA (2006) GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim Cosmochim Acta 70:5653–5664

    Article  CAS  Google Scholar 

  • Bond DPG, Grasby SE (2017) On the causes of mass extinctions. Palaeogeogr Palaeoclimatol Palaeoecol 478:3–29

    Article  Google Scholar 

  • Bond DPG, Hilton J, Wignall PB, Ali JR, Stevens LG, Sun YD, Lai XL (2010) The Middle Permian (Capitanian) mass extinction on land and in the oceans. Earth Sci Rev 102:100–116

    Article  Google Scholar 

  • Burgess SD, Bowring SA, Shen SZ (2014) High-precision timeline for Earth’s most severe extinction. Proc Natl Acad Sci USA 111:3316–3321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgess SD, Muirhead JD, Bowring SA (2017) Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat Commun 8:164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell I, Czamanske GK, Fedorenko VA, Hill RI, Stepanov V (1992) Synchronism of the Siberian traps and the Permian–Triassic boundary. Science 258:1760–1763

    Article  CAS  PubMed  Google Scholar 

  • Cao CQ, Love GD, Hays LE, Wang W, Shen SZ, Summons RE (2009) Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth Planet Sci Lett 281:188–201

    Article  CAS  Google Scholar 

  • Chung SL, Jahn BM, Wu GY, Lo CH, Cong BL (1998) The Emeishan flood basalt in SW China: a mantle plume initiation model and its connection with continental breakup and mass extinction at the Permian–Triassic boundary. Am Geophys Union Geodyn Ser 27:47–58

    Google Scholar 

  • Clapham ME, Shen SZ, Bottjer DJ (2009) The double mass extinction revisited: reassessing the severity, selectivity, and causes of the end-Guadalupian biotic crisis (Late Permian). Palaeobiology 35:32–50

    Article  Google Scholar 

  • Courtillot V (1999) Evolutionary catastrophes: the science of mass extinctions. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • de la Fuente Marcos R, de la Fuente Marcos C (2004) On the correlation between the recent star formation rate in the solar neighbourhood and the glaciations period record on Earth. New Astron 10:53–66

    Article  Google Scholar 

  • Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in paleobiology. Freeman Cooper, San Francisco, pp 82–115

    Google Scholar 

  • Erlykin AD, Harper DAT, Sloan T, Wolfendale AW (2017) Mass extinctions over the last 500 Myr: an astronomical cause? Palaeontology 60:159–167

    Article  Google Scholar 

  • Ernst RE (2014) Large igneous provinces. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Erwin DH (2006) Extinction. Princeton University Press, New York

    Google Scholar 

  • Farley KA, Mukhopadhyay S (2001) An extraterrestrial impact at the Permian–Triassic boundary? Science 293:U1–U3

    Article  Google Scholar 

  • Farley KA, Ward P, Garrison G, Mukhopadhyay S (2005) Absence of extraterrestrial 3He in Permian–Triassic age sedimentary rocks. Earth Planet Sci Lett 240:265–275

    Article  CAS  Google Scholar 

  • Federenko V, Czamanske G, Zen’ko T, Budhan D (2000) Field and geochemical studies of the melilite-bearing Arydhangsky Suite, and overall perspective on the Siberian alkaline-ultramafic flood-volcanic rocks. Int Geol Rev 42:769–804

    Article  Google Scholar 

  • Fielding CR, Frank TD, Birgenheier LP, Rygel MC, Jones AT, Roberts J (2008) Stratigraphic imprint of the Late Palaeozoic ice age in eastern Australia: a record of alternating glacial and nonglacial climate regime. J Geol Soc Lond 165:129–140

    Article  Google Scholar 

  • Grasby SE, Sanei H, Beauchamp B (2011) Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nat Geosci 4:104–107

    Article  CAS  Google Scholar 

  • Grasby SE, Beauchamp B, Bond DPG, Wignall PB, Sanei H (2015) Mercury anomaly associated with three extinction events (Capitanian crisis, Latest Permian Extinction, and the Smithian/Spathian Extinction) in NW Pangea. Geol Mag 153:285–297

    Article  CAS  Google Scholar 

  • Grice K, Cao C, Love GD, Bottcher ME, Twitchett R, Grosjean E, Summons RE, Turgeon SC, Dunning W, Jin YG (2005) Photic zone euxinia during the Permian-Triassic superanoxic event. Science 307:706–709

    Article  CAS  PubMed  Google Scholar 

  • Hallam, A., Wignall, P.B., 1997. Mass extinctions and their aftermath. Oxford University Press, Oxford

    Google Scholar 

  • Haq BU, Schutter SR (2008) A chronology of Paleozoic sea-level changes. Science 322:64–68

    Article  CAS  PubMed  Google Scholar 

  • Hoffman PF, Schrag DP (2002) The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14:129–155

    Article  CAS  Google Scholar 

  • Holser WT, Magaritz M (1987) Events near the Permian-Triassic boundary. Mod Geol 11:155–180

    Google Scholar 

  • Irving E, Parry LG (1963) The magnetism of some Permian rocks from New South Wales. Geophys J R Astron Soc 7:395–411

    Article  Google Scholar 

  • Isozaki Y (1997) Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep-sea. Science 276:235–238

    Article  CAS  PubMed  Google Scholar 

  • Isozaki Y (2001) An extraterrestrial impact at the Permian–Triassic boundary? Science 293:U1–U3

    Article  Google Scholar 

  • Isozaki Y (2009a) The Illawarra Reversal: a fingerprint of the superplume triggering Pangean breakup and end-Guadalupian (Permian) extinction. Gondwana Res 15:421–432

    Article  Google Scholar 

  • Isozaki Y (2009b) Integrated plume winter scenario for the double-phased extinction during the Paleozoic-Mesozoic transition: G-LB and P-TB events from a Panthalassan perspective. J Asian Earth Sci 36:459–480

    Article  Google Scholar 

  • Isozaki Y (2014) Memories of pre-Jurassic lost oceans: how to retrieve them from extant lands. Geosci Can 41:283–311

    Article  Google Scholar 

  • Isozaki Y, Aljinović D (2009) End-Guadalupian extinction of the Permian gigantic bivalve Alatoconchidae: end of gigantism in tropical seas by cooling. Palaeogeogr Palaeoclimatol Palaeoecol 284:11–21

    Article  Google Scholar 

  • Isozaki Y, Servais T (2018) The Hirnantian (Late Ordovician) and end-Guadalupian (Middle Permian) mass extinction events compared. Lethaia 51:173–186 in press

    Article  Google Scholar 

  • Isozaki Y, Kawahata H, Ota A (2007) A unique carbon isotope record across the Guadalupian-Lopingian (Middle-Upper Permian) boundary in mid-oceanic paleoatoll carbonates: the high-productivity “Kamura event” and its collapse in Panthalassa. Glob Planet Chang 55:21–38

    Article  Google Scholar 

  • Isozaki Y, Aljinovic D, Kawahata H (2011) The Guadalupian (Permian) Kamura event in European Tethys. Palaeogeogr Palaeoclimatol Palaeoecol 308:12–21

    Article  Google Scholar 

  • Jin YG, Zhang J, Shang QH (1994) Two phases of the end-Permian mass extinction. Can Soc Petrol Geol Mem 17:813–822

    Google Scholar 

  • Kaiho K, Kajiwara Y, Nakano T, Miura Y, Kawahata H, Tazaki K, Ueshima M, Chen ZQ, Shi GR (2001) End-Permian catastrophe by a bolide impact: evidence of a gigantic release of sulfur from the mantle. Geology 29:815–818

    Article  CAS  Google Scholar 

  • Kamo SL, Czamanske GK, Krogh TE (1996) A minimum U-Pb age for Siberian flood basalt volcanism. Geochim Cosmochim Acta 60:3505–3511

    Article  CAS  Google Scholar 

  • Kani T, Hisanabe C, Isozaki Y (2013) The Capitanian minimum of 87Sr/86Sr ratio in the Permian mid-Panthalassan paleo-atoll carbonates and its demise by the deglaciation and continental doming. Gondwana Res 24:212–221

    Article  CAS  Google Scholar 

  • Kataoka R, Ebisuzaki T, Miyahara H, Nimura T, Tomida T, Sato T, Maruyama S (2014) The Nebula Winter: the united view of the snowball Earth, mass extinctions, and explosive evolution in the late Neoproterozoic and Cambrian periods. Gondwana Res 25:1153–1163

    Article  CAS  Google Scholar 

  • Kiessling W (2001) Paleoclimatic significance of Phanerozoic reefs. Geology 29:751–754

    Article  Google Scholar 

  • Kirschvink JL, Isozaki Y, Shibuya H, Otofuji Y, Raub TD, Hilburn IA, Kasuya T, Yokoyama M, Bonifacie M (2015) Challenging the sensitivity limits of paleomagnetism: magnetostratigraphy of weakly magnetized Guadalupian- Lopingian (Permian) limestone from Kyushu. Jpn Palaeogeogr Palaeoclimatol Palaeoecol 418:75–89

    Article  Google Scholar 

  • Knoll AH, Bambach RK, Canfield DE, Grotzinger JP (1996) Comparative Earth history and Late Permian mass extinction. Science 273:452–457

    Article  CAS  PubMed  Google Scholar 

  • Koeberl C, Gilmour I, Reimold WU, Claeys P, Ivanov B (2002) End-Permian catastrophe by bolide impact: evidence of a gigantic release of sulfur from the mantle: comment and reply. Geology 30:855–856

    Article  Google Scholar 

  • Kofukuda D, Isozaki Y, Igo H (2014) A remarkable sea-level drop across the Guadalupian-Lopingian (Permian) boundary in low-latitude mid-Panthalassa: irreversible changes recorded in accreted paleo-atoll limestones in Akasaka and Ishiyama. Jpn J Asian Earth Sci 82:47–65

    Article  Google Scholar 

  • Korte C, Jasper T, Kozur HW, Veizer J (2005) δ18Ocarb and δ13Ccarb of Permian brachiopods: a record of seawater evolution and continental glaciation. Palaeogeogr Palaeoclimatol Palaeoecol 224:333–351

    Article  Google Scholar 

  • Korte C, Jasper T, Kozur HW, Veizer J (2006) 87Sr/86Sr record of Permian seawater. Palaeogeogr Paleoclimatol Palaeoecol 240:89–107

    Article  Google Scholar 

  • Kump L, Arthur MA (1999) Interpreting carbon-isotope excursions: carbonates and organic matter. Chem Geol 161:181–198

    Article  CAS  Google Scholar 

  • Leitch EM, Vasisht G (1998) Mass extinctions and the sun’s encounters with spiral arms. New Astron 3:51–56

    Article  Google Scholar 

  • Looy CV, Twitchett RJ, Dilcher DL, Van Konijnenburg-Van Cittert JHA, Visscher H (2001) Life in the end-Permian dead zone. Proc Natl Acad Sci U S A 98:7879–7883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas SG (2009) Timing and magnitude of tetrapod extinctions across the Permo-Triassic boundary. J Asian Earth Sci 36:491–502

    Article  Google Scholar 

  • Lucas SG, Shen SZ (2018) The Permian timescale. Geol Soc Lond Spec Publ 450:1–19

    Article  Google Scholar 

  • Lucas SG, Tanner LH (2018) The missing mass extinction at the Triassic-Jurassic boundary. In: Tanner LH (ed) The Late Triassic world. Topics in geobiology, vol 46. Springer, Heidelberg, pp 721–785

    Chapter  Google Scholar 

  • Matsuda T, Isozaki Y (1991) Well-documented travel history of Mesozoic pelagic chert in Japan: from remote ocean to subduction zone. Tectonics 10:475–499

    Article  Google Scholar 

  • McArthur JM, Howarth RJ, Shields GA (2012) Strontium isotope stratigraphy. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) Geologic time scale 2012. Elservier, Amsterdam, pp 127–144

    Chapter  Google Scholar 

  • Medvedev MV, Melott AL (2007) Do extragalactic cosmic rays induce cycles in fossil diversity? Astrophys J 664:879–889

    Article  CAS  Google Scholar 

  • Musashi M, Isozaki Y, Koike T, Kreulen R (2001) Stable carbon isotope signature in mid-Panthalassa shallow-water carbonates across the Permo-Triassic boundary: evidence for 13C-depleted ocean. Earth Planet Sci Lett 196:9–20

    Article  Google Scholar 

  • Nabbefeld B, Grice K, Summons R, Hays L, Cao C (2010) Significance of polycyclic aromatic hydrocarbons (PAHs) in Permian/Triassic boundary sections. Appl Geochem 25:1374–1382

    Article  CAS  Google Scholar 

  • Paytan A, Gray ET (2012) Sulfur isotope stratigraphy. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) Geologic time scale 2012. Elsevier, Amsterdam, pp 167–180

    Chapter  Google Scholar 

  • Raup DM, Sepkoski JJ (1982) Mass extinctions in the marine fossil record. Science 215:1501–1503

    Article  CAS  PubMed  Google Scholar 

  • Reichow MK, Pringle MS, Al’Mukhamedov AI, Allen MB, Andreichev VL, Buslov MM, Davies CE, Fedoseev GS, Fitton JG, Inger S, Medvedev AY, Mitchell C, Puchkov VN, Safonova IY, Scott RA, Saunders AD (2009) The timing and extent of the eruption of the Siberian Traps large igneous province: implications for the end-Permian environmental crisis. Earth Planet Sci Lett 277:9–20

    Article  CAS  Google Scholar 

  • Renne PR, Basu AR (1991) Rapid eruption of the Siberian Traps flood blasts at the Permian–Triassic boundary. Science 253:176–179

    Article  CAS  PubMed  Google Scholar 

  • Retallack GJ (2013) Permian and Triassic greenhouse crises. Gondwana Res 24:90–103

    Article  CAS  Google Scholar 

  • Rocha-Pinto HJ, Scalo J, Maciel WJ, Flynn C (2000) Chemical enrichment and star formation in the Milky Way disk II. Star Format Hist Astron Astrophys 358:869–885

    CAS  Google Scholar 

  • Royer DL, Donnadieu Y, Park J, Kowalczyk J, Godderis Y (2014) Error analysis of CO2 and O2 estimates from the long-term geochemical model GEOCARBSULF. Am J Sci 314:1259–1283

    Article  CAS  Google Scholar 

  • Rubidge BS, Erwin DH, Ramezani J, Bowring SA, De Klerk WJ (2013) High-precision temporal calibration of late Permian vertebrate biostratigraphy: U-Pb zircon constraints from the Karoo Supergroup. S Afr Geol 41:363–366

    CAS  Google Scholar 

  • Saitoh M, Isozaki Y, Yao JX, Ji ZS, Ueno Y, Yoshida H (2013) Lithostratigraphy across the Guadalupian-Lopingian (Middle-Upper Permian) boundary at Chaotian in Sichuan, South China: secular change in sea level and redox condition. Glob Planet Chang 105:180–192

    Article  Google Scholar 

  • Saitoh M, Ueno Y, Isozaki Y, Nishizawa M, Shozugawa K, Kawamura T, Yao JX, Ji ZS, Takai K, Yoshida H, Matsuo M (2014) Isotopic evidence for water-column denitrification and sulfate reduction preceding the end-Guadalupian (Permian) extinction. Glob Planet Chang 123:110–120

    Article  Google Scholar 

  • Saltzman MR, Thomas E (2012) Carbon isotope stratigraphy. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) Geologic time scale 2012. Elsevier, Amsterdam, pp 207–232

    Chapter  Google Scholar 

  • Saunders AD, England RW, Reichow MK, White RV (2005) A mantle plume origin for the Siberian traps: uplift and extension in the West Siberian Basin. Russ Lithos 79:407–424

    Article  CAS  Google Scholar 

  • Schindewolf OH (1955) Ueber die moglichen Ursachen der grossen erdgeschitlichen Faunenschnitte. Neus Jahrb Palaontol 1954:457–465

    Google Scholar 

  • Scotese CR (2008) PALEOMAP project. http://www.scotese.com

  • Sepkoski JJ Jr (1996) Patterns of Phanerozoic extinction: a perspective from global data bases. In: Walliser OH (ed) Global events and event stratigraphy in the Phanerozoic. Springer, Heidelberg, pp 35–51

    Chapter  Google Scholar 

  • Shaviv NJ, Veizer J (2003) Celestial driver of Phanerozoic climate? GSA Today 13:4–10

    Article  Google Scholar 

  • Shellnutt JG (2014) The Emeishan large igneous province: a synthesis. Geosci Front 5:369–394

    Article  CAS  Google Scholar 

  • Shen SZ, Shi GR (2002) Paleobiogeographical extinction patterns of Permian brachiopods in the Asian-Western Pacific region. Paleobiology 28:449–463

    Article  Google Scholar 

  • Shen YN, Farquhar J, Zhang H, Masterson A, Zhang TG, Wing BA (2011) Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction. Nat Commun 2:210

    Article  PubMed  CAS  Google Scholar 

  • Shen SZ, Cao C, Zhang H, Bowring SA, Henderson CM, Payne JL, Davydov VI, Chen B, Yuan D, Zhang Y, Wang W, Zhang Q (2013) High-resolution δ13Ccarb chemostratigraphy from latest Guadalupian through earliest Triassic in South China and Iran. Earth Planet Sci Lett 37:156–165

    Article  CAS  Google Scholar 

  • Shi L, Feng QL, Shen J, Ito T, Chen ZQ (2016) Prolification of shallow-water radiolarians coinciding with enhanced oceanic productivity in reducing conditions during the Middle Permian, South China: evidence from the Gufeng Formation of western Hubei Province. Palaeogeogr Paleoclimatol Palaeoecol 444:1–14

    Article  Google Scholar 

  • Stanley SM (1988) Climate cooling and mass extinction of Paleozoic reef communities. PALAIOS 3:228–232

    Article  Google Scholar 

  • Stanley SM (2016) Estimates of the magnitudes of major marine mass extinctions in earth history. Proc Natl Acad Sci U S A 113:E6325–E6334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanley SM, Yang X (1994) A double mass extinction at the end of the Paleozoic era. Science 266:1340–1344

    Article  CAS  PubMed  Google Scholar 

  • Steiner MB (2006) The magnetic polarity time scale across the Permian–Triassic boundary. Geol Soc Lond Spec Publ 265:15–38

    Article  Google Scholar 

  • Sun Y, Joachimski MM, Wignall PB, Yan C, Chen Y, Jiang H, Wang L, Lai X (2012) Lethally hot temperatures during the early Triassic greenhouse. Science 338:366–370

    Article  CAS  PubMed  Google Scholar 

  • Svensen H, Planke S, Polozov AG, Schmidbauer N, Corfu F, Podladchikov YY, Jamtveit B (2009) Siberian gas venting and the end-Permian environmental crisis. Earth Planet Sci Lett 277:490–500

    Article  CAS  Google Scholar 

  • Svensmark H (2006) Cosmic rays and biosphere over 4 billion years. Astron Nachr 327:871–875

    Article  CAS  Google Scholar 

  • Svensmark H, Calder N (2007) The chilling stars: a new theory of climate change. Icon Books, London

    Google Scholar 

  • Svensmark H, Friis-Christensen E (1997) Variation of cosmic ray flux and global cloud coverage – a missing link in solar-climate relationships. J Atmos Solar Terr Phys 59:1225–1232

    Article  CAS  Google Scholar 

  • Svensmark H, Enghoff MB, Shaviv NJ, Svensmark J (2017) Increased ionization supports growth of aerosols into cloud condensation nuclei. Nat Commun 8:2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usoskin IG, Solanki SK, Kovaltsov GA (2007) Grand minima and maxima of solar activity: new observational constraints. Astron Astrophys 471:4301–4309

    Article  CAS  Google Scholar 

  • Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhm F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr, δ13Ccarb and δ 18Ocarb evolution of Phanerozoic seawater. Chem Geol 161:59–88

    Article  CAS  Google Scholar 

  • Wang XD, Sugiyama T (2000) Diversity and extinction patterns of Permian coral faunas of China. Lethaia 33:285–294

    Article  Google Scholar 

  • Wang W, Cao CQ, Wang Y (2004) The carbon isotope excursion on GSSP candidate section of Lopingian-Guadalupian boundary. Earth Planet Sci Lett 220:57–67

    Article  CAS  Google Scholar 

  • Whiteside JH, Grice K (2016) Biomarker records associated with mass extinction events. Annu Rev Earth Planet Sci 44:581–612

    Article  CAS  Google Scholar 

  • Wignall PB (2001) Large igneous provinces and mass extinctions. Earth Sci Rev 53:1–33

    Article  CAS  Google Scholar 

  • Wignall PB, Hallam A (1992) Anoxia as a cause of the Permian/Triassic mass extinction: facies evidence from northern Italy and western United States. Palaeogeogr Palaeoclimatol Palaeoecol 93:21–46

    Article  Google Scholar 

  • Wignall PB, Sun YB, Bond DPG, Izon G, Newton RJ, Vedrine S, Widdowson M, Ali JR, Lai XL, Jian HS, Cope H, Botrell SH (2009) Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China. Science 324:1179–1182

    Article  CAS  PubMed  Google Scholar 

  • Xie S, Pancost RD, Huang J, Wignall PB, Yu JX, Tang XY, Chen L, Huang XY, Lai XL (2007) Changes in the global carbon cycle occurred as two episodes during the Permian–Triassic crisis. Geology 35:1083–1086

    Article  CAS  Google Scholar 

  • Zhong YT, He B, Mundil R, Xu YG (2014) CA-TIMS zircon U–Pb dating of felsic ignimbrite from the Binchuan section: implications for the termination age of Emeishan large igneous province. Lithos 204:14–19

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Prof. Robert Geller (Univ. Tokyo) provided valuable comments on the manuscript. Tomoyo Tobita and Hikaru Sawada helped in drafting. This study was funded by KAKENHI (grant-in-aid from the Japan Society for Promotion of Science; no. 26257212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Isozaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Isozaki, Y. (2019). End-Paleozoic Mass Extinction: Hierarchy of Causes and a New Cosmoclimatological Perspective for the Largest Crisis. In: Yamagishi, A., Kakegawa, T., Usui, T. (eds) Astrobiology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3639-3_18

Download citation

Publish with us

Policies and ethics