Skip to main content

Cellular Microfossils and Possible Microfossils in the Paleo- and Mesoarchean

  • Chapter
  • First Online:
Astrobiology
  • 2381 Accesses

Abstract

Representative Paleo- and Mesoarchean (>3.0 Ga) microfossils and possible microfossils retaining cellular structures from the Pilbara Craton, Western Australia, and the Kaapvaal Craton, South Africa, are reviewed. Rod-shaped, spheroidal, lenticular, and filamentous (and their subtypes) microfossils have been identified in those areas, and their sizes range from submicrons to 300 μm across. Depositional environments of host rocks vary from shallow marine or even terrestrial to deep-sea, with or without hydrothermal activities, providing no constraints on the geologic setting for the emergence of life. Although biological affinities such as cyanobacteria and sulfur bacteria have been proposed for a few types of Paleo- and Mesoarchean microfossils, those of most others are poorly understood.

Significantly, recent progress in Archean geobiology has revealed that the fossil record includes large (from 20 μm up to 300 μm along the major dimension), organic-walled spheroid and lenticular microfossils. If their biological affinities can be determined convincingly, they would provide us with new insights into the early biosphere and its evolution on the Earth and potentially on other planets. Further challenging and innovative studies are required in order to reveal the diversity of Paleo- and Mesoarchean ecosystems and to develop a taxonomy for such ancient microfossils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW (2006) Stromatolite reef from the Early Archaean era of Australia. Nature 441:714–718

    Article  CAS  PubMed  Google Scholar 

  • Allwood AC, Burch I, Walter MR (2007) Stratigraphy and facies of the 3.43 Ga Strelley Pool Chert in the Southwestern North Pole Dome, Pilbara Craton, Western Australia. Geol Sur West Aust Rec 2007/11

    Google Scholar 

  • Allwood AC, Kamber BS, Walter MR, Burch IW, Kanik I (2010) Trace elements record depositional history of an Early Archean stromatolitic carbonate platform. Chem Geol 270:148–163

    Article  CAS  Google Scholar 

  • Alterman W, Kaźmierczak J (2003) Archean microfossils: a reappraisal of early life on earth. Res Microbiol 154:611–617

    Article  Google Scholar 

  • Angert ER (2005) Alternatives to binary fission in bacteria. Nat Rev Microbiol 3:214–224

    Article  CAS  PubMed  Google Scholar 

  • Awramik SM, Grey K (2005) Stromatolites: biogenicity, biosignatures, and bioconfusion. In: Proceedings of SPIE 5906, Astrobiology and Planetart Missions, 59060P. https://doi.org/10.1117/12.625556

  • Awramik SM, Schopf JW, Walter MR (1983) Filamentous fossil bacteria from the Archean of Western Australia. Precambrian Res 20:357–374

    Article  Google Scholar 

  • Awramik SM, Schopf JW, Walter MR (1988) Carbonaceous filaments from North Pole, Western Australia: are they fossil bacteria in Archaean stromatolites? A discussion. Preacambrian Res 39:303–309

    Article  Google Scholar 

  • Barghoorn ES, Schopf JW (1966) Microorganisms three billion years old from the Precambrian of South Africa. Science 152:758–763

    Article  CAS  PubMed  Google Scholar 

  • Barghoorn ES, Tyler SA (1965) Microorganisms from the Gunflint Chert. Science 147:563–577

    Article  CAS  PubMed  Google Scholar 

  • Brasier MD, Green OR, Jephcoat AP, Kleppe AK, Van Kranendonk MJ, Lindsay JF, Steele A, Grassineau NV (2002) Questioning the evidence for earth’s oldest fossils. Nature 416:76–81

    Article  PubMed  Google Scholar 

  • Brasier MD, Green OR, Lindsay JF, McLoughlin N, Steele A, Stoakes C (2005) Critical testing of earth’s oldest putative fossil assemblage from the ~3.5 Ga Apex chert, Chinaman Creek, Western Australia. Precambrian Res 140:55–102

    Article  CAS  Google Scholar 

  • Brasier M, McLoughlin N, Green O, Wacey D (2006) A fresh look at the fossil evidence for early Archaean cellular life. Philos Trans R Soc B361:887–902

    Article  CAS  Google Scholar 

  • Brooks J, Muir MD, Shaw G (1973) Chemistry and morphology of Precambrian microorganisms. Nature 244:215–217

    Article  CAS  Google Scholar 

  • Buick R (1984) Carbonaceous filaments from North Pole, Western Australia: are they fossil bacteria in Archaean stromatolites? Precambrian Res 24:157–172

    Article  Google Scholar 

  • Buick R (1988) Carbonaceous filaments from North Pole, Western Australia: are they fossil bacteria in Archaean stromatolites? A reply. Precambrian Res 39:311–317

    Article  Google Scholar 

  • Buick (1990) Microfossil recognition in Archean rocks: an appraisal of spheroids and filaments from a 3500 m.y. old chert-barite unit at North Pole, Western Australia. Palaios 5:441–459

    Article  Google Scholar 

  • Buick R (2008) When did oxygenic photosynthesis evolve? Philos Trans R Soc B363:2731–2743

    Article  CAS  Google Scholar 

  • Buick R, Dunlop JSR (1990) Evaporitic sediments of early Archaean age from the Warrawoona Group, North Pole, Western Australia. Sedimentol 37:247–277

    Article  Google Scholar 

  • Cloud PE Jr (1965) Significance of the Gunflint (Precambrian) microflora. Science 148:27–35

    Article  PubMed  Google Scholar 

  • Crowe SA, Døssing LN, Beukes NJ, Bau M, Kruger SJ, Frei R, Canfield DE (2013) Atmospheric oxygenation three billion years ago. Nature 501:535–538

    Article  CAS  PubMed  Google Scholar 

  • Czaja AD, Beukes NJ, Osterhout JT (2016) Sulfur-oxidizing bacteria prior to the great oxidation event from the 2.52 Ga Gamohaan formation of South Africa. Geology 44:983–986

    Article  CAS  Google Scholar 

  • DiMarco MJ, Lowe DR (1989) Shallow-water volcaniclastic deposition in the early Archean Panorama Formation, Warrawoona Group, eastern Pilbara Block, Western Autralia. Sediment Geol 64:43–63

    Article  Google Scholar 

  • Djokic T, Van Kranendonk MJ, Campbell KA, Walter MR, Ward CR (2017) Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nat Commun 8:15263

    Article  PubMed  PubMed Central  Google Scholar 

  • Dodd MS, Papineau D, Grenne T, Slack JF, Rittner M, Pirajno F, O’Neil J, Little CTS (2017) Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543:60–65

    Article  CAS  PubMed  Google Scholar 

  • Duck LJ, Glikson M, Golding SD, Webb RE (2007) Microbial remains and other carbonaceous forms from the 3.24 Ga Sulphur Springs black smoker deposit, Western Australia. Precambrian Res 154:205–220

    Article  CAS  Google Scholar 

  • Dunlop JSR, Milne VA, Groves DI, Muir MD (1978) A new microfossil assemblage from the Archaean of Western Australia. Nature 274:676–678

    Article  Google Scholar 

  • Engel AEJ, Nagy B, Nagy LA, Engel CG, Kremp GOW, Drew CM (1968) Alga-like forms in Onverwacht series, South Africa: oldest recognized lifelike forms on Earth. Science 161:1005–1008

    Article  CAS  PubMed  Google Scholar 

  • Glikson M, Duck LJ, Golding SD, Hofmann A, Bolhar R, Webb R, Baiano JCF, Sly LI (2008) Microbial remains in some earliest earth rocks: comparison with a potential modern analogue. Precambrian Res 164:187–200

    Article  CAS  Google Scholar 

  • Grey K (1999) A modified palynological preparation technique for the extraction of large Neoproterozoic acanthomorph acritarchs and other acid-insoluble microfossils. Geol Surv West Aust, Rec 1999/10, 23 p

    Google Scholar 

  • Grey K, Sugitani K (2009) Palynology of Archean microfossils (c. 3.0 Ga) from the Mount Grant area, Pilbara Craton, Western Australia: further evidence of biogenicity. Precambrian Res 173:60–69

    Article  CAS  Google Scholar 

  • Grey K, Roberts FI, Freeman MJ, Hickman AH, Van Kranendonk MJ, Bevan AWR (2010) Management plan for state geoheritage reserves. Geol Surv West Aust, Rec 2010/13, 23p

    Google Scholar 

  • Heubeck C, Engelhardt J, Byerly GR, Zeh A, Sell B, Luber T, Lowe DR (2013) Timing of deposition and deformation of the Moodies Group (Barberton Greenstone Belt, South Africa): very-high-resolution of Archaean surface processes. Precambrian Res 231:236–262

    Article  CAS  Google Scholar 

  • Hickman AH (2008) Regional review of the 3426–3350 Ma Strelley Pool Formation, Pilbara Craton, Western Australia. Geol Surv West Aust, Rec 2008/15

    Google Scholar 

  • Hickman AH (2012) Review of the Pilbara Craton and Fortescue Basin, Western Australia: crustal evolution providing environments for early life. Island Arc 21:1–31

    Article  Google Scholar 

  • Hickman AH, Van Kranendonk MJ (2008) Archean crustal evolution and mineralization of the northern Pilbara Craton – a field guide. Geol Surv West Aust, Rec 2008/13

    Google Scholar 

  • Hickman AH, Van Kranendonk MJ, Grey K (2011) State geoheritage reserve R50149 (Trendall Reserve), North Pole, Pilbara Craton, Western Australia – geology and evidence for early Archean life. Geol Surv West Aust Rec 2011/10, pp 17–18

    Google Scholar 

  • Hoashi M, Bevacqua DC, Otake T, Watanabe Y, Hickman AH, Utsunomiya S, Ohmoto H (2009) Primary haematite formation in an oxygenated sea 3.46 billion years ago. Nat Geosci 2:301–306

    Article  CAS  Google Scholar 

  • Hofmann HJ (2004) Archean microfossils and abiomorphs. Astrobiology 4:135–136

    Article  CAS  PubMed  Google Scholar 

  • Hofmann A, Harris C (2008) Silica alteration zones in the Barberton greenstone belt: a window into subseafloor processes 3.5–3.3 Ga ago. Chem Geol 257:221–239

    Article  CAS  Google Scholar 

  • Hofmann HJ, Grey K, Hickman AH, Thorpe RI (1999) Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geol Soc Am Bull 111:1256–1262

    Article  Google Scholar 

  • Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond B 361:903–915

    Article  CAS  Google Scholar 

  • Homann M, Heubeck C, Bontognali TRR, Bouvier A-S, Baumgartner LP, Airo A (2016) Evidence for cavity-dwelling microbial life in 3.22 tidal deposits. Geology 4:51–54

    Article  CAS  Google Scholar 

  • House CH, Oehler DZ, Sugitani K, Mimura K (2013) Carbon isotopic analyses of ca. 3.0 Ga microstructures imply planktonic autotrophs inhabited Earth’s early oceans. Geology 41:651–654

    Article  CAS  Google Scholar 

  • Isozaki Y, Kabashima T, Ueno Y, Kitajima K, Maruyama S, Kato Y, Terabayashi M (1997) Early Archean mid-oceanic ridge rocks and early life in the Pilbara Craton, W. Australia. EOS 78:399

    Google Scholar 

  • Javaux EJ, Knoll AH, Walter MR (2003) Recognizing and interpreting the fossils of early eukaryotes. Orig Life Evol Biosph 33:75–94

    Article  CAS  PubMed  Google Scholar 

  • Javaux EJ, Marshall CP, Bekker A (2010) Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature 463:934–938

    Article  CAS  PubMed  Google Scholar 

  • Kiyokawa S, Ito T, Ikehara M, Kitajima F (2006) Middle Archean volcano-hydrothermal sequence: bacterial microfossil-bearing 3.2 Ga Dixon Island Formation, coastal Pilbara terrane, Australia. Geol Soc Am Bull 118:3–22

    Article  Google Scholar 

  • Kiyokawa S, Koge S, Ito T, Ikehara M (2014) An ocean-floor carbonaceous sedimentary sequence in the 3.2-Ga Dixon Island Formation, coastal Pilbara terrane, Western Australia. Precambrian Res 255:123–143

    Article  CAS  Google Scholar 

  • Knoll AH (2014) Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a016121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knoll AH, Barghoorn ES (1977) Archean microfossils showing cell division from the Swaziland system of South Africa. Science 198:396–398

    Article  CAS  PubMed  Google Scholar 

  • Knoll AH, Javaux EJ, Hewitt D, Cohen P (2006) Eukaryotic organisms in Proterozoic oceans. Philos Trans R Soc B361:1023–1038

    Article  CAS  Google Scholar 

  • Kozawa T, Sugitani K, Oehler DZ, House CH, Saito I, Watanabe T, Gotoh T (2018) Early Archean planktonic mode of life: implications from fluid dynamics of lenticular microfossils. Geobiology. https://doi.org/10.1111/gbi.12319

    Article  PubMed  Google Scholar 

  • Kremer B, Kaźmierczak J (2017) Cellularly preserved microbial fossils from ~3.4 Ga deposits of South Africa: a testimony of early appearance of oxygenic life. Precambrian Res 295:117–129

    Article  CAS  Google Scholar 

  • Kustatscher E, Dotzler N, Taylor TN, Krings M (2014) Microfossils with suggested affinities to the Pyramimonadales (Pyramimonadophyceae Chlorophyta) from the lower Devonian Rhynie chert. Acta Palaeobotanica 54:163–171

    Article  Google Scholar 

  • Lepot K, Williford KH, Ushikubo T, Sugitani K, Mimura K, Spicuzza MJ, Valley JW (2013) Texture-specific isotopic compositions in 3.4 Gyr old organic matter support selective preservation in cell-like structures. Geochim Cosmochim Acta 112:66–86

    Article  CAS  Google Scholar 

  • Lindsay JF, Brasier MD, McLoughlin N, Green OR, Fogel M, Steele A, Mertzman SA (2005) The problem of deep carbon-an Archean paradox. Precambrian Res 143:1–22

    Article  CAS  Google Scholar 

  • Lowe DR (1999) Petrology and sedimentology of cherts and related silicified sedimentary rocks in the Swaziland Supergroup. Geol Soc Am Spec Pap 329:83–114

    Google Scholar 

  • Lowe DR, Worrell GF (1999) Sedimentology, mineralogy, and implications of silicified evaporites in the Kromberg Formation, Barberton Greenstone Belt, South Africa. Geol Soc Am Spec Pap 329:167–188

    Google Scholar 

  • Lowe DR, Byerly GR, Kyte FT, Shukolyukov A, Asaro F, Krull A (2003) Spherule beds 3.47–3.24 billion years old in the Barberton greenstone belt, South Africa: a record of large meteorite impacts and their influence on early crustal and biological evolution. Astrobiology 3:7–48

    Article  PubMed  Google Scholar 

  • Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506:307–315

    Article  CAS  PubMed  Google Scholar 

  • Muir MD, Hall DO (1974) Diverse microfossils in Precambrian Onverwacht group rocks of South Africa. Nature 252:376–378

    Article  Google Scholar 

  • Mukhopadhyay J, Crowely QG, Ghosh S, Ghosh G, Chakrabarti K, Misra B, Heron K, Bose S (2014) Oxygenation of Archean atmosphere: new paleosol constraints from eastern India. Geology 42:923–926

    Article  CAS  Google Scholar 

  • Nagy B, Nagy LA (1969) Early pre-Cambrian Onverwacht microstructures: possibly the oldest fossil on Earth? Nature 223:1226–1229

    Article  CAS  Google Scholar 

  • Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409:1083–1091

    Article  CAS  PubMed  Google Scholar 

  • Noffke N, Christian D, Wacey D, Hazen RM (2013) Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old dresser formation, Pilbara, Western Australia. Astrobiology 13:1103–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nutman AP, Bennett VC, Friend CRL, Van Kranendonk MJ, Chivas AP (2016) Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537:535–539

    Article  CAS  PubMed  Google Scholar 

  • Oehler DZ, Robert F, Walter MR, Sugitani K, Allwood A, Meibom A, Mostefaoui S, Selo M, Thomen A, Gibson EK (2009) NanoSIMS: insights to biogenicity and syngeneity of Archaean carbonaceous structures. Precambrian Res 173:70–78

    Article  CAS  Google Scholar 

  • Oehler DZ, Robert F, Walter MR, Sugitani K, Meibom A, Mostefaoui S, Gibson EK (2010) Diversity in the Archaean biosphere: new insights from NanoSIMS. Astrobiology 10:413–424

    Article  CAS  PubMed  Google Scholar 

  • Oehler DZ, Walsh MM, Sugitani K, Liu M-C, House CH (2017) Large and robust lenticular microorganisms on the young earth. Precambrian Res 296:112–119

    Article  CAS  Google Scholar 

  • Parke M, Boalch GT, Jowett R, Harbour DS (1978) The genus Pterosperma (Prasinophyceae): species with a single equatorial ala. J Mar Biol Assoc UK 58:239–276

    Article  Google Scholar 

  • Pflug HD (1967) Structured organic remains from the Fig Tree Series (Precambrian) of the Barberton Mountain Land (South Africa). Rev Palaeobot Palynol 5:9–29

    Article  Google Scholar 

  • Phoenix VR, Konhauser KO, Adams DG, Bottrell SH (2001) Role of biomineralization as an ultraviolet shield: implications for Archean life. Geology 29:823–826

    Article  CAS  Google Scholar 

  • Planavsky NJ, Asael D, Hofmann A, Reinhard CT, Lalonde SV, Knudsen A, Wang X, Ossa-Ossa F, Pecoits E, Smith AJB, Beukes NJ, Bekker A, Johnson TM, Konhauser KO, Lyons TW, Rouxel OJ (2014) Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat Geosci 7:283–286

    Article  CAS  Google Scholar 

  • Rasmussen B (2000) Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature 405:676–679

    Article  CAS  PubMed  Google Scholar 

  • Retallack GJ, Krinsley DH, Fischer R, Razink JJ, Langworthy KA (2016) Archean coastal-plain paleosols and life on land. Gondwana Res 40:1–20

    Article  CAS  Google Scholar 

  • Rosing MT, Frei R (2004) U-rich Archaean sea-floor sediments from Greenland— indications of > 3700 Ma oxygenic photosynthesis. Earth Planet Sci Lett 217:237–244

    Article  CAS  Google Scholar 

  • Salman V, Amann R, Girnth A-C, Polerecky L, Bailey JV, Høgslund S, Jessen G, Pantoja S, Schult-Vogt HN (2011) A single-cell sequencing approach to the classification of large, vacuolated sulfur bacteria. Syst Appl Microbiol 34:243–259

    Article  CAS  PubMed  Google Scholar 

  • Salman V, Bailey JV, Teske A (2013) Phylogenetic and morphologic complexity of giant sulphur bacteria. Antonie Van Leeuwenhoek 104:169–189

    Article  CAS  PubMed  Google Scholar 

  • Samuelsson J (1997) Biostratigraphy and paleobiology of Early Neoproterozoic strata of the Kola Peninsula, Northwest Russia. Nor Geol Tidsskr 77:165–192

    Google Scholar 

  • Samuelsson J, Dawes PR, Vidal G (1999) Organic-walled microfossils from the Proterozoic Thule Supergroup, Northwest Greenland. Precambrian Res 96:1–23

    Article  CAS  Google Scholar 

  • Schirrmeister BE, Sanchez-Baracaldo P, Wacey D (2016) Cyanobacterial evolution during the Precambrian. Int J Astrobiol 15:187–204

    Article  Google Scholar 

  • Schopf JW (1976) Are the oldest ‘fossils’, fossils? Orig Life 7:19–36

    Article  CAS  PubMed  Google Scholar 

  • Schopf JW (1993) Microfossils of the Early Archean Apex chert: new evidence of the antiquity of life. Science 260:640–646

    Article  CAS  PubMed  Google Scholar 

  • Schopf JW (2006) Fossil evidence of Archaean life. Philos Trans R Soc B361:869–885

    Article  CAS  Google Scholar 

  • Schopf JW, Barghoorn ES (1967) Alga-like fossils from the Early Precambrian of South Africa. Science 156:508–512

    Article  CAS  PubMed  Google Scholar 

  • Schopf JW, Packer BM (1987) Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science 237:70–73

    Article  CAS  PubMed  Google Scholar 

  • Schopf JW, Walter MR (1983) Archean microfossils: new evidence of ancient microbes. In: Schopf JW (ed) Earth’s earliest biosphere, its origin and evolution. Princeton Univ. Press, Princeton, pp 214–239

    Google Scholar 

  • Schopf JW, Hayes JM, Walter MR (1983) Evolution of Earth’s earliest ecosystem: recent progress and unsolved problems. In: Schopf JW (ed) Earth’s earliest biosphere. Its origin and evolution. Princeton University Press, Princeton, pp 361–384

    Google Scholar 

  • Schopf JW, Kudryavtsev AB, Sugitani K, Walter MR (2010) Precambrian microbe-like pseudofossils: a promising solution to the problem. Precambrian Res 179:191–205

    Article  CAS  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Walter MR, Van Kranendonk MJ, Williford KH, Kozdon R, Valley JW, Gallardo VA, Espinoza C, Flannery DT (2015) Sulfur-cycling fossil bacteria from the 1.8-Ga Duck Creek Formation provide promising evidence of evolution’s null hypothesis. Proc Natl Acad Sci 112:2087–2092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Osterhout JT, Williford KH, Kitajima K, Valley JW, Sugitani K (2017) An anaerobic ∼3400 Ma shallow-water microbial consortium: presumptive evidence of Earth’s Paleoarchean anoxic atmosphere. Precambrian Res 299:309–318

    Article  CAS  Google Scholar 

  • Schopf JW, Kitajima K, Spicuzza MJ, Kudryavtsev AB, Valley JW (2018) SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions. Proc Natl Acad Sci USA 115:53–58

    Article  CAS  Google Scholar 

  • Schulz HN, Brinkhoff T, Ferdelman TG, Mariné MH, Teske A, Jørgensen BB (1999) Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284:493–495

    Article  CAS  PubMed  Google Scholar 

  • Sergeev VN, Knoll AH, Vorob’eva NG, Sergeeva ND (2016) Microfssils from the lower Mesoproterozoic Kaltasy Formation, East European platform. Precambrian Res 278:87–107

    Article  CAS  Google Scholar 

  • Siever R (1992) The silica cycle in the Precambrian. Geochim Cosmochim Acta 56:3265–3272

    Article  CAS  Google Scholar 

  • Stefurak EJT, Lowe DR, Zenter D, Fischer WW (2014) Primary silica granules – a new mode of Paleoarchean sedimentation. Geology 42:283–286

    Article  CAS  Google Scholar 

  • Sugahara H, Sugitani K, Mimura K, Yamashita F, Yamamoto K (2010) A systematic rare-earth elements and yttrium study of Archean cherts at the Mount Goldsworthy greenstone belt in the Pilbara Craton: implications for the origin of microfossil-bearing black cherts. Precambrian Res 177:73–87

    Article  CAS  Google Scholar 

  • Sugitani K (2012) Life cycle and taxonomy of Archean flanged microfossils from the Pilbara Craton, Western Australia. 34th International Geological Congress (IGC): AUSTRALIA 2012, 17.3#257

    Google Scholar 

  • Sugitani K, Mimura K, Suzuki K, Nagamine K, Sugisaki R (2003) Stratigraphy and sedimentary petrology of an Archean volcanic-sedimentary succession at Mt. Goldsworthy in the Pilbara Block, Western Australia: implications of evaporite (nahcolite) and barite deposition. Precambrian Res 120:55–79

    Article  CAS  Google Scholar 

  • Sugitani K, Grey K, Allwood AC, Nagaoka T, Mimura K, Mimura M, Marshall CP, Van Kranendonk MJ, Walter MR (2007) Diverse microstructures from Archaean chert from the Mount Goldsworthy – Mount Grant area, Pilbara Craton, Western Australia: microfossils, dubiomicrofossils, or pseudofossils? Precambrian Res 158:228–262

    Article  CAS  Google Scholar 

  • Sugitani K, Grey K, Nagaoka T, Mimura K (2009a) Three-dimensional morphological and textural complexity of Archean putative microfossils form the northeastern Pilbara Craton: indications of biogenicity of large (>15μm) spheroidal and spindle-like structures. Astrobiology 9:603–615

    Article  PubMed  Google Scholar 

  • Sugitani K, Grey K, Nagaoka T, Mimura K, Walter MR (2009b) Taxonomy and biogenicity of Archaean spheroidal microfossils (ca. 3.0 Ga) from the Mount Goldsworthy-Mount Grant area in the northeastern Pilbara Craton, Western Australia. Precambrian Res 173:50–59

    Article  CAS  Google Scholar 

  • Sugitani K, Lept K, Nagaoka T, Mimura K, Van Kranendonk M, Oehler DZ, Walter MR (2010) Biogenicity of morphologically diverse carbonaceous microstructures from the ca. 3400 Ma Strelley Pool Formation, in the Pilbara Craton, Western Australia. Astrobiology 10:899–920

    Article  PubMed  Google Scholar 

  • Sugitani K, Mimura K, Nagaoka T, Lepot K, Takeuchi M (2013) Microfossil assemblage from the 3400Ma Strelley Pool Formation in the Pilbara Craton, Western Australia: results from a new locality. Precambrian Res 226:59–74

    Article  CAS  Google Scholar 

  • Sugitani K, Mimura K, Takeuchi M, Lepot K, Ito S, Javaux EJ (2015a) Early evolution of large micro-organisms with cytological complexity revealed by microanalyses of 3.4 Ga organic-walled microfossils. Geobiology 13:507–521

    Article  CAS  PubMed  Google Scholar 

  • Sugitani K, Mimura K, Takeuchi M, Yamaguchi T, Suzuki K, Senda R, Asahara Y, Wallis S, Van Kranendonk MJ (2015b) A Paleoarchean coastal hydrothermal field inhabited by diverse microbial communities: the Strelley Pool Formation, Pilbara Craton, Western Australia. Geobiology 13:522–545

    Article  CAS  PubMed  Google Scholar 

  • Sugitani K, Van Kranendonk MJ, Oehler DZ, House CH, Walter MR (2017) Comment: Archean coastal-plain paleosols and life on land. Gondwana Res 44:265–269

    Article  Google Scholar 

  • Sugitani K, Kohama T, Mimura K, Takeuchi M, Senda R, Morimoto H (2018) Speciation of Paleoarchean life demonstrated by analysis of the morphological variation of lenticular microfossils, from the Pilbara Craton of Western Australia. Astrobiology 18:1057–1070

    Article  CAS  PubMed  Google Scholar 

  • Tappan H (1980) The paleobiology of plant protists. W.H. Freeman and Co., San Francisco, 1028 p

    Google Scholar 

  • Tice MM, Lowe DR (2004) Photosynthetic microbial mats in the 3,416-Myr-old-ocean. Nature 431:549–552

    Article  CAS  PubMed  Google Scholar 

  • Tice MM, Lowe DR (2006a) The origin of carbonaceous matter in pre-3.0 Ga greenstone terraines: a review and new evidence from the 3.42 Ga Buck Reef Chert. Earth Sci Rev 76:259–300

    Article  Google Scholar 

  • Tice MM, Lowe DR (2006b) Hydrogen-based carbon fixation in the earliest known photosynthetic organisms. Geology 34:37–40

    Article  CAS  Google Scholar 

  • Ueno Y, Isozaki Y, Yurimoto H, Maruyama S (2001a) Carbon isotopic signatures of individual Archean microfossils (?) from Western Australia. Int Geol Rev 43:196–212

    Article  Google Scholar 

  • Ueno Y, Maruyama S, Isozaki Y, Yurimoto H (2001b) Early Archean (ca. 3.5 Ga) microfossils and 13C-depleted carbonaceous matter in the North Pole area, Western Australia: field occurrence and geochemistry. In: Nakashima S et al (eds) Geochemistry and the origin of life. Universal Academy Press, Tokyo, pp 203–236

    Google Scholar 

  • Ueno Y, Yamada K, Yoshida N, Maruyama S, Isozaki Y (2006) Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440(7083):516–519

    Article  CAS  PubMed  Google Scholar 

  • van den Hoek C, Mann DG, Jahns HM (1995) Algae: an introduction to phycology. Cambridge University Press, Cambridge, UK 625 p

    Google Scholar 

  • Van Kranendonk MJ (2006) Volcanic degassing, hydrothermal circulation and the flourishing of early life on earth: a review of the evidence from c. 3490–3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth Sci Rev 74:197–240

    Article  CAS  Google Scholar 

  • Van Kranendonk MJ (2007) A review of the evidence for putative Paleoarchean life in the Pilbara Craton, Western Australia. In: Van Kranendonk MJ et al (eds) Earth’s oldest rocks. Elsevier, Amsterdam, pp 855–877

    Google Scholar 

  • Van Kranendonk MJ (2011) Morphology as an indicator of biogenicity for 3.5–3.2 Ga fossil stromatolites from the Pilbara Craton, Western Australia. In: Reitner J, Quéric N-V, Arp G (eds) Advances in stromatolite geobiology, Lecture Notes in Earth Sciences, vol 131. Springer, Cham, pp 537–554

    Google Scholar 

  • Van Kranendonk MJ, Hickman AH, Smithies RH, Nelson DN, Pike G (2002) Geology and tectonic evolution of the Archaean North Pilbara terrain, Pilbara Craton, Western Australia. Econ Geol 97:695–732

    Google Scholar 

  • Van Kranendonk MJ, Hickman AH, Smithies RH, Williams IR, Bagas L, Farrell TR (2006) Revised lithostratigraphy of Archean supracrustal and intrusive rocks in the northern Pilbara Craton, Western Australia. West Aust Geol Surv, Rec 2006/15

    Google Scholar 

  • Van Kranendonk MJ, Philippot P, Lepot K, Bodorkos S, Pirajno F (2008) Geological setting of earth’s oldest fossils in the ca. 3.5 Ga dresser formation, Pilbara Craton, Western Australia. Precambrian Res 167:93–124

    Google Scholar 

  • Vearncombe S, Barely ME, Groves DI, McNaughton NJ, Mikucki EJ, Vearncombe JR (1995) 3.26 Ga black smoker-type mineralization in the Strelley Pool Belt, Pilbara Craton, Western Australia. J Geol Soc Lond 152:587–590

    Google Scholar 

  • Vorob’eva NG, Sergeev VN, Petrov PY (2015) Kotuikan formation assemblage: a diverse organic-walled microbiota in the Mesoproterozoic Anabar succession, northern Siberia. Precambrian Res 256:201–222

    Article  CAS  Google Scholar 

  • Wacey D (2009) Early life on earth: a practical guide. Springer, Heidelberg

    Book  Google Scholar 

  • Wacey D (2012) Earliest evidence for life on earth: an Australian perspective. Aust J Earth Sci 59:153–166

    Article  CAS  Google Scholar 

  • Wacey D, Kilburn MR, Saunders M, Cliff J, Brasier MD (2011) Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nat Geosci 4:698–702

    Article  CAS  Google Scholar 

  • Wacey D, Noffke N, Saunders M, Guagliardo P, Pyle DM (2018a) Volcanogenic pseudo-fossils from the ~3.48 Ga Dresser Formation, Pilbara, Western Australia. Astrobiology 18:539–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wacey D, Saunders M, Kong C (2018b) Remarkably preserved tephra from the 3430 Ma Strelley Pool Formation, Western Australia: implications fro the interpretation of Precambrian microfossils. Earth Planet Sci Lett 487:33–43

    Article  CAS  Google Scholar 

  • Walsh MM (1992) Microfossils and possible microfossils from Early Archean Onverwacht Group, Barberton Mountain Land, South Africa. Precambrian Res 54:271–293

    Article  CAS  PubMed  Google Scholar 

  • Walsh MM, Lowe DR (1985) Filamentous microfossils from the 3,500-Myr-old Onverwacht Group, Barberton Mountain Land, South Africa. Nature 314:530–532

    Article  Google Scholar 

  • Walter MR, Bauld J, Brock TD (1976) Microbiology and morphogenesis of columnar stromatolites (Conophyton, Vacerrilla) from hot springs in Yellowstone National Park. In: Walter MR (ed) Stromatolites, Developments in Sedimentology 20. Elsevier, Amsterdam, pp 273–310

    Google Scholar 

  • Waterbury JB, Stanier RY (1978) Patterns of growth and development in pleurocapsalean cyanobacteria. Microbiol Rev 42:2–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westall F, de Wit MJ, Dann J, van der Gaast S, de Ronde CEJ, Gerneke D (2001) Early Archean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton greenstone belt, South Africa. Precambrian Res 106:93–116

    Article  CAS  Google Scholar 

  • Westall F, de Vries ST, Nijman W, Rouchon V, Orberger B, Pearson V, Watson J, Verchovsky A, Wright I, Rouzaud J-N, Marchesini D, Severine A (2006) The 3.446 Ga “Kitty’s Gap Chert”, an early Archean microbial ecosystem. Geol Soc Am Bull, Spec Pap 405:105–131

    Google Scholar 

  • Westall F, Foucher F, Cavalazzi B, de Vries ST, Nijman W, Pearson V, Watson J, Verchovsky A, Wright I, Rouzaud J-N, Marchesini D, Anne S (2011) Volcaniclastic habitats for early life on Earth and Mars: a case study from ~3.5 Ga-old rocks from the Pilbara, Australia. Planet Space Sci 310:1093–1106

    Article  CAS  Google Scholar 

  • Witze A (2016) Claims of earth’s oldest fossils tantalize researchers. Nature. https://doi.org/10.1038/nature.2016.20506

  • Wolf ET, Toon OB (2010) Fractal organic haze provided an ultraviolet shield for early earth. Science 328:1266–1268

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support from the Japanese Society for the Promotion of Science (Grants-in-aid Nos 22340149 and 24654162) is gratefully acknowledged. I sincerely thank to Kathleen Grey for her constructive review and editing. Tsutomu Nagaoka and Natsuko Takagi are also acknowledged for their assistance for preparation of thin sections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichiro Sugitani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sugitani, K. (2019). Cellular Microfossils and Possible Microfossils in the Paleo- and Mesoarchean. In: Yamagishi, A., Kakegawa, T., Usui, T. (eds) Astrobiology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3639-3_16

Download citation

Publish with us

Policies and ethics