Skip to main content

Evolution of Photosynthetic System

  • Chapter
  • First Online:
Astrobiology
  • 2432 Accesses

Abstract

Cyanobacteria and chloroplasts in plants and algae possess two different light-driven engines, designated as photosystem I (PS I) and II (PS II). Each photosystem contains chlorophylls as a photosynthetic pigment and has a principal importance in the photosynthetic electron transport system. They photooxidize water as an electron donor, and oxygen is evolved as a result, which is called oxygenic photosynthesis. In the living world, however, there is another type of photosynthesis without evolving oxygen, i.e., anoxygenic photosynthesis. The anoxygenic phototrophs cannot use water as an electron donor but use various reductive compounds such as hydrogen sulfide and hydrogen instead of water. Although oxygenic photosynthesis includes two photosystems, PS I and PS II, anoxygenic phototrophs have either one of the photosystems. Anoxygenic phototrophs are widely distributed among the bacteria, whereas oxygenic photosynthesis is limited to the cyanobacterial lineage. The phylogenetic analysis strongly suggests that oxygenic photosynthesis has emerged from anoxygenic photosynthesis. Before emergence of oxygenic photosynthesis, ancestral PS I and PS II have evolved in anoxygenic phototrophs. Emergence of oxygenic photosynthesis has a close relation to the coexistence of these different photosystems in a cyanobacterial ancestor 2.5 G years ago. The coexistence occurred by lateral gene transfer (LGT), such a LGT was frequently found in the evolutionary process of anoxygenic photosynthesis. The frequent LGT of photosystems formed the phylogenetic divergence of anoxygenic phototrophs and contributed the emergence of oxygenic photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bekker A, Slack JF, Planavsky N et al (2010) Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ Geol 105:467–508

    Article  CAS  Google Scholar 

  • Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynth Res 33:91–111

    Article  CAS  Google Scholar 

  • Blankenship RE, Hartman H (1998) The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci 6:4–6

    Article  Google Scholar 

  • Bryant DA, Costas AMG, Maresca JA et al (2007) Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic Acidobacterium. Science 317:523–526

    Article  CAS  Google Scholar 

  • Cardona T (2015) A fresh look at the evolution and diversification of photochemical reaction centers. Photosynth Res 126:111–134

    Article  CAS  Google Scholar 

  • Castenholz RW (2015) General characteristics of the cyanobacteria. In: Whitman WB (ed) Bergey’s manual of systematic bacteriology. Wiley, New York, pp 1–23

    Google Scholar 

  • Des Marais DJ (2000) When did photosynthesis emerge on earth? Science 289:1703–1705

    Google Scholar 

  • Di Rienzi SC, Sharon I, Wrighton KC et al (2013) The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to cyanobacteria. elife 2013:1–25

    Google Scholar 

  • Dismukes GC, Klimov VV, Baranov SV et al (2001) The origin of atmospheric oxygen on earth: the innovation of oxygenic photosynthesis. Proc Natl Acad Sci U S A 98:2170–2175

    Article  CAS  Google Scholar 

  • Ehrenreich A, Widdel F (1994) Anaerobic oxidation of ferrous iron by purple bacteria, a new-type of phototrophic metabolism. Appl Environ Microbiol 60:4517–4526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farquhar J, Bao H, Thiemens MH (2000) Atmospheric influence of earth’s earliest sulfur cycle. Science 189:756–759

    Article  Google Scholar 

  • Friedrich M (2002) Phylogenetic analysis reveals multiple lateral transfers of adenosine-5 -phosphosulfate reductase genes among sulfate-reducing microorganisms. J Bacteriol 184:278–289

    Article  CAS  Google Scholar 

  • Hanada S (2014) The phylum Chloroflexi, the family Chloroflexaceae, and the related phototrophic families Oscillochloridaceae and Roseiflexaceae. In: Dworkin M, Falkow S, Rosenberg E et al (eds) Prokaryotes, Proteobacteria delta Epsil. subclasses. Deep. rooting Bact, vol 7. Springer, Berlin, pp 515–532

    Google Scholar 

  • Heising S, Richter L, Ludwig W, Schink B (1999) Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a “Geospirillum” sp. strain. Arch Microbiol 172:116–124

    Article  CAS  Google Scholar 

  • Klein M, Friedrich M, Roger AJ et al (2001) Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J Bacteriol 183:6028–6035

    Article  CAS  Google Scholar 

  • Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in earth’s early ocean and atmosphere. Nature 506:307–315

    Article  CAS  Google Scholar 

  • Madigan MT (2015) Heliobacterium. In: Whitman WB (ed) Bergey’s Manual of Systematic Bacteriology. Wiley, New York, pp 1–4

    Google Scholar 

  • Madigan M, Jung DO (2009) An overview of purple bacteria: systematics, physiology, and habitats. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria, Advances in photosynthesis and respiration, vol 28. Springer, Dordrecht, pp 1–15

    Chapter  Google Scholar 

  • Mulkidjanian AY, Koonin EV, Makarova KS et al (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci 103:13126–13131

    Article  CAS  Google Scholar 

  • Nagashima KVP, Hiraishi A, Shimada K, Matsuura K (1997) Horizontal transfer of genes coding for the photosynthetic reaction centers of purple bacteria. J Mol Evol 45:131–136

    Article  CAS  Google Scholar 

  • Overmann J (2015) Green sulfur bacteria. In: Whitman WB (ed) Bergey’s manual of systematic bacteriology. Wiley, New York, pp 1–8

    Google Scholar 

  • Sadekar S, Raymond J, Blankenship RE (2006) Conservation of distantly related membrane proteins: photosynthetic reaction centers share a common structural core. Mol Biol Evol 23:2001–2007

    Article  CAS  Google Scholar 

  • Segata N, Börnigen D, Morgan XC, Huttenhower C (2013) PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 4:2304

    Article  Google Scholar 

  • Tang H, Chen Y (2013) Global glaciations and atmospheric change at ca. 2.3 Ga. Geosci Front 4:583–596

    Article  CAS  Google Scholar 

  • Tank M, Bryant DA (2015) Chloracidobacterium thermophilum gen. nov., sp. nov.: an anoxygenic microaerophilic chlorophotoheterotrophic acidobacterium. Int J Syst Evol Microbiol 65:1426–1430

    Article  CAS  Google Scholar 

  • Vermaas WF (1994) Evolution of heliobacteria: implications for photosynthetic reaction center complexes. Photosynth Res 41:285–294

    Article  CAS  Google Scholar 

  • Xiong J, Bauer CE (2002) Complex evolution of photosynthesis. Annu Rev Plant Biol 53:503–521

    Article  CAS  Google Scholar 

  • Zeng Y, Feng F, Medova H et al (2014) Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc Natl Acad Sci 111:7795–7800

    Article  CAS  Google Scholar 

  • Zeng Y, Selyanin V, Lukes M et al (2015) Characterization of the microaerophilic, bacteriochlorophyll a-containing bacterium Gemmatimonas phototrophica sp. Nov., and emended descriptions of the genus Gemmatimonas and Gemmatimonas aurantiaca. Int J Syst Evol Microbiol 65:2410–2419

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Hanada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hanada, S. (2019). Evolution of Photosynthetic System. In: Yamagishi, A., Kakegawa, T., Usui, T. (eds) Astrobiology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3639-3_10

Download citation

Publish with us

Policies and ethics