Skip to main content

Molecular Basis for Reduced Lifespan Induced by Environmental Toxicants or Stresses

  • Chapter
  • First Online:
Molecular Toxicology in Caenorhabditis elegans
  • 265 Accesses

Abstract

What’s the potential basic principle for the toxicity induction on different endpoints in nematodes exposed to environmental toxicants or stresses? To answer such a question, we here focus on the endpoint of lifespan to discuss the potential basic principle for toxicity induction from environmental toxicants or stresses. In this chapter, we will discuss how the environmental toxicants or stresses reduce lifespan by affecting the molecular basis for longevity, and how the innate immune response is involved in the regulation of longevity reduction in nematodes exposed to environmental toxicants or stresses. We will further introduce the genetic identification of genes and signaling cascade in the regulation of toxicity of environmental toxicants or stresses. We will also discuss how the environmental toxicants or stresses reduce lifespan by affecting signaling pathways associated with the stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhao Y-L, Yang J-N, Wang D-Y (2016) A microRNA-mediated insulin signalling pathway regulates the toxicity of multi-walled carbon nanotubes in nematode Caenorhabditis elegans. Sci Rep 6:23234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wu Q-L, Zhi L-T, Qu Y-Y, Wang D-Y (2016) Quantum dots increased fat storage in intestine of Caenorhabditis elegans by influencing molecular basis for fatty acid metabolism. Nanomedicine 12:1175–1184

    Article  CAS  PubMed  Google Scholar 

  3. Zhi L-T, Fu W, Wang X, Wang D-Y (2016) ACS-22, a protein homologous to mammalian fatty acid transport protein 4, is essential for the control of toxicity and translocation of multi-walled carbon nanotubes in Caenorhabditis elegans. RSC Adv 6:4151–4159

    Article  CAS  Google Scholar 

  4. Shakoor S, Sun L-M, Wang D-Y (2016) Multi-walled carbon nanotubes enhanced fungal colonization and suppressed innate immune response to fungal infection in nematodes. Toxicol Res 5:492–499

    Article  CAS  Google Scholar 

  5. Yang R-L, Rui Q, Kong L, Zhang N, Li Y, Wang X-Y, Tao J, Tian P-Y, Ma Y, Wei J-R, Li G-J, Wang D-Y (2016) Metallothioneins act downstream of insulin signaling to regulate toxicity of outdoor fine particulate matter (PM2.5) during Spring Festival in Beijing in nematode Caenorhabditis elegans. Toxicol Res 5:1097–1105

    Article  CAS  Google Scholar 

  6. Wu Q-L, Han X-X, Wang D, Zhao F, Wang D-Y (2017) Coal combustion related fine particulate matter (PM2.5) induces toxicity in Caenorhabditis elegans by dysregulating microRNA expression. Toxicol Res 6:432–441

    Article  CAS  Google Scholar 

  7. Zhi L-T, Ren M-X, Qu M, Zhang H-Y, Wang D-Y (2016) Wnt ligands differentially regulate toxicity and translocation of graphene oxide through different mechanisms in Caenorhabditis elegans. Sci Rep 6:39261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao L, Rui Q, Wang D-Y (2017) Molecular basis for oxidative stress induced by simulated microgravity in nematode Caenorhabditis elegans. Sci Total Environ 607–608:1381–1390

    Article  PubMed  CAS  Google Scholar 

  9. Zhao L, Qu M, Wong G, Wang D-Y (2017) Transgenerational toxicity of nanopolystyrene particles in the range of μg/L in nematode Caenorhabditis elegans. Environ Sci Nano 4:2356–2366

    Article  CAS  Google Scholar 

  10. Xiao G-S, Zhao L, Huang Q, Yang J-N, Du H-H, Guo D-Q, Xia M-X, Li G-M, Chen Z-X, Wang D-Y (2018) Toxicity evaluation of Wanzhou watershed of Yangtze Three Gorges Reservoir in the flood season in Caenorhabditis elegans. Sci Rep 8:6734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Chen H, Li H-R, Wang D-Y (2017) Graphene oxide dysregulates Neuroligin/NLG-1-mediated molecular signaling in interneurons in Caenorhabditis elegans. Sci Rep 7:41655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Qu M, Xu K-N, Li Y-H, Wong G, Wang D-Y (2018) Using acs-22 mutant Caenorhabditis elegans to detect the toxicity of nanopolystyrene particles. Sci Total Environ 643:119–126

    Article  CAS  PubMed  Google Scholar 

  13. Dong S-S, Qu M, Rui Q, Wang D-Y (2018) Combinational effect of titanium dioxide nanoparticles and nanopolystyrene particles at environmentally relevant concentrations on nematodes Caenorhabditis elegans. Ecotoxicol Environ Saf 161:444–450

    Article  CAS  PubMed  Google Scholar 

  14. Zhao L, Kong J-T, Krasteva N, Wang D-Y (2018) Deficit in epidermal barrier induces toxicity and translocation of PEG modified graphene oxide in nematodes. Toxicol Res 7(6):1061–1070. https://doi.org/10.1039/C8TX00136G

    Article  CAS  Google Scholar 

  15. Ding X-C, Wang J, Rui Q, Wang D-Y (2018) Long-term exposure to thiolated graphene oxide in the range of μg/L induces toxicity in nematode Caenorhabditis elegans. Sci Total Environ 616–617:29–37

    Article  PubMed  CAS  Google Scholar 

  16. Xiao G-S, Chen H, Krasteva N, Liu Q-Z, Wang D-Y (2018) Identification of interneurons required for the aversive response of Caenorhabditis elegans to graphene oxide. J Nanbiotechnol 16:45

    Article  Google Scholar 

  17. Wang D-Y (2018) Nanotoxicology in Caenorhabditis elegans. Springer, Singapore

    Book  Google Scholar 

  18. Li W-J, Wang D-Y, Wang D-Y (2018) Regulation of the response of Caenorhabditis elegans to simulated microgravity by p38 mitogen-activated protein kinase signaling. Sci Rep 8:857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Yang R-L, Ren M-X, Rui Q, Wang D-Y (2016) A mir-231-regulated protection mechanism against the toxicity of graphene oxide in nematode Caenorhabditis elegans. Sci Rep 6:32214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhuang Z-H, Li M, Liu H, Luo L-B, Gu W-D, Wu Q-L, Wang D-Y (2016) Function of RSKS-1-AAK-2-DAF-16 signaling cascade in enhancing toxicity of multi-walled carbon nanotubes can be suppressed by mir-259 activation in Caenorhabditis elegans. Sci Rep 6:32409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Johnson TE, Wood WB (1982) Genetic analysis of life-span in Caenorhabditis elegans. Proc Natl Acad Sci U S A 79:6603–6607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Klass MR (1977) Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 6:413–429

    Article  CAS  PubMed  Google Scholar 

  23. Klass MR (1983) A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech Ageing Dev 22:279–286

    Article  CAS  PubMed  Google Scholar 

  24. Kapahi P, kaeberlein M, Hansen M (2017) Dietary restriction and lifespan: lessons from invertebrate models. Ageing Res Rev 39:3–14

    Article  PubMed  Google Scholar 

  25. Smith-Vikos T, Slack FJ (2012) MicroRNAs and their roles in aging. J Cell Sci 125:7–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Martins R, Lithgow GJ, Link W (2016) Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging Cell 15:196–207

    Article  CAS  PubMed  Google Scholar 

  27. Hekimi A, Guarente L (2003) Genetics and the specificity of the aging process. Science 299:1351–1354

    Article  CAS  PubMed  Google Scholar 

  28. Pan H, Finkel T (2017) Key proteins and pathways that regulate lifespan. J Biol Chem 292:6452–6460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512

    Article  CAS  PubMed  Google Scholar 

  30. Lapierre LR, Hansen M (2012) Lessons from C. elegans: signaling pathways for longevity. Trends Endocrinol Metab 23:637–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–946

    Article  CAS  PubMed  Google Scholar 

  32. Morris JZ, Tissenbaum HA, Ruvkun G (1996) A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382:536–539

    Article  CAS  PubMed  Google Scholar 

  33. Hertweck M, Gobel C, Baumeister R (2004) C. elegans SGK-1 is the critical component in the Akt/PKB kinase complex to control stress response and life span. Dev Cell 6:577–588

    Article  CAS  PubMed  Google Scholar 

  34. Paradis S, Ruvkun G (1998) Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 12:2488–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Paradis S, Ailion M, Toker A, Thomas JH, Ruvkun G (1999) A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev 13:1438–1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Henderson ST, Johnson TE (2001) daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol 11:1975–1980

    Article  CAS  PubMed  Google Scholar 

  37. Lee RY, Hench J, Ruvkun G (2001) Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway. Curr Biol 11:1950–1957

    Article  CAS  PubMed  Google Scholar 

  38. Lin K, Hsin H, Libina N, Kenyon C (2001) Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet 28:139–145

    Article  CAS  PubMed  Google Scholar 

  39. Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278:1319–1322

    Article  CAS  PubMed  Google Scholar 

  40. Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389:994–999

    Article  CAS  PubMed  Google Scholar 

  41. Dorman JB, Albinder B, Shroyer T, Kenyon C (1995) The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics 141:1399–1406

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhao Y-L, Yang R-L, Rui Q, Wang D-Y (2016) Intestinal insulin signaling encodes two different molecular mechanisms for the shortened longevity induced by graphene oxide in Caenorhabditis elegans. Sci Rep 6:24024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Boehm M, Slack F (2005) A developmental timing microRNA and its target regulate life span in C. elegans. Science 310:1954–1957

    Article  CAS  PubMed  Google Scholar 

  44. Hsu AL, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300:1142–1145

    Article  CAS  PubMed  Google Scholar 

  45. Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410:227–230

    Article  CAS  PubMed  Google Scholar 

  46. Wolff S, Ma H, Burch D, Maciel GA, Hunter T, Dillin A (2006) SMK-1, an essential regulator of DAF-16-mediated longevity. Cell 124:1039–1053

    Article  CAS  PubMed  Google Scholar 

  47. Shore DE, Ruvkun G (2013) A cytoprotective perspective on longevity regulation. Trends Cell Biol 23:409–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Honda Y, Honda S (1999) The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J 13:1385–1478

    Article  CAS  PubMed  Google Scholar 

  49. Cherkasova V, Ayyadevara S, Egilmez N, Shmookler Reis R (2000) Diverse Caenorhabditis elegans genes that are upregulated in dauer larvae also show elevated transcript levels in long-lived, aged, or starved adults. J Mol Biol 300:433–481

    Article  CAS  PubMed  Google Scholar 

  50. Yu H, Larsen P (2001) DAF-16-dependent and independent expression targets of DAF-2 insulin receptor-like pathway in Caenorhabditis elegans include FKBPs. J Mol Biol 314:1017–1045

    Article  CAS  PubMed  Google Scholar 

  51. Halaschek-Wiener J, Khattra JS, McKay S, Pouzyrev A, Stott JM, Yang GS, Holt RA, Jones SJ, Marra MA, Brooks-Wilson AR, Riddle DL (2005) Analysis of long-lived C. elegans daf-2 mutants using serial analysis of gene expression. Genome Res 15:603–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Murphy C, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424:277–360

    Article  CAS  PubMed  Google Scholar 

  53. Lakowski B, Hekimi S (1998) The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci U S A 95:13091–13096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jia K, Chen D, Riddle DL (2004) The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131:3897–3906

    Article  CAS  PubMed  Google Scholar 

  55. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F (2003) Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426:620

    Article  CAS  PubMed  Google Scholar 

  56. Gelino S, Chang JT, Kumsta C, She X, Davis A, Nguyen C, Panowski S, Hansen M (2016) Intestinal autophagy improves healthspan and longevity in C. elegans during dietary restriction. PLoS Genet 12:e1006135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Toth ML, Sigmond T, Borsos E, Barna J, Erdelyi P, Takacs-Vellai K, Orosz L, Kovacs AL, Csikos G, Sass M, Vellai T (2008) Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy 4:330–338

    Article  CAS  PubMed  Google Scholar 

  58. Jia K, Levine B (2007) Autophagy is required for dietary restriction-mediated lifespan extension in C. elegans. Autophagy 3:597–599

    Article  PubMed  Google Scholar 

  59. Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C (2008) A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4:e24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Heestand BN, Shen Y, Liu W, Magner DB, Storm N, Meharg C, Habermann B, Antebi A (2013) Dietary restriction induced longevity is mediated by nuclear receptor NHR-62 in Caenorhabditis elegans. PLoS Genet 9:e1003651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lapierre LR, De Magalhaes Filho CD, McQuary PR, Chu CC, Visvikis O, Chang JT, Gelino S, Ong B, Davis AE, Irazoqui JE, Dillin A, Hansen M (2013) The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nat Commun 4:2267

    Article  PubMed  CAS  Google Scholar 

  62. Dillin A, Hsu AL, Arantes-Oliveira N, Lehrer-Graiwer J, Hsin H, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Rates of behavior and aging specified by mitochondrial function during development. Science 298:2398–2401

    Article  CAS  PubMed  Google Scholar 

  63. Feng J, Bussiere F, Hekimi S (2001) Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell 1:633–644

    Article  CAS  PubMed  Google Scholar 

  64. Lee SS, Lee RY, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003) A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 33:40–48

    Article  CAS  PubMed  Google Scholar 

  65. Hartman PS, Ishii N, Kayser EB, Morgan PG, Sedensky MM (2001) Mitochondrial mutations differentially affect aging, mutability and anesthetic sensitivity in Caenorhabditis elegans. Mech Ageing Dev 122:1187–1201

    Article  CAS  PubMed  Google Scholar 

  66. Kayser EB, Sedensky MM, Morgan PG (2004) The effects of complex I function and oxidative damage on lifespan and anesthetic sensitivity in Caenorhabditis elegans. Mech Ageing Dev 125:455–464

    Article  CAS  PubMed  Google Scholar 

  67. Tsang WY, Sayles LC, Grad LI, Pilgrim DB, Lemire BD (2001) Mitochondrial respiratory chain deficiency in Caenorhabditis elegans results in developmental arrest and increased life span. J Biol Chem 276:32240–32246

    Article  CAS  PubMed  Google Scholar 

  68. Yang W, Hekimi S (2010) Two modes of mitochondrial dysfunction lead independently to lifespan extension in Caenorhabditis elegans. Aging Cell 9:433–447

    Article  CAS  PubMed  Google Scholar 

  69. Ishii N, Fujii M, Hartman PS, Tsuda M, Yasuda K, Senoo-Matsuda N, Yanase S, Ayusawa D, Suzuki K (1998) A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394:694–697

    Article  CAS  PubMed  Google Scholar 

  70. Ishii N, Takahashi K, Tomita S, Keino T, Honda S, Yoshino K, Suzuki K (1990) A methyl viologen-sensitive mutant of the nematode Caenorhabditis elegans. Mutat Res 237:165–171

    Article  CAS  PubMed  Google Scholar 

  71. Hosokawa H, Ishii N, Ishida H, Ichimori K, Nakazawa H, Suzuki K (1994) Rapid accumulation of fluorescent material with aging in an oxygen-sensitive mutant mev-1 of Caenorhabditis elegans. Mech Ageing Dev 74:161–170

    Article  CAS  PubMed  Google Scholar 

  72. Senoo-Matsuda N, Yasuda K, Tsuda M, Ohkubo T, Yoshimura S, Nakazawa H, Hartman PS, Ishii N (2001) A defect in the cytochrome b large subunit in complex II causes both superoxide anion overproduction and abnormal energy metabolism in Caenorhabditis elegans. J Biol Chem 276:41553–41558

    Article  CAS  PubMed  Google Scholar 

  73. Hamilton B, Dong Y, Shindo M, Liu W, Odell I, Ruvkun G, Lee SS (2005) A systematic RNAi screen for longevity genes in C. elegans. Genes Dev 19:1544–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wong A, Boutis P, Hekimi S (1995) Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics 139:1247–1259

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Van Raamsdonk JM, Hekimi S (2009) Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS Genet 5:e1000361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Dancy BM, Sedensky MM, Morgan PG (2014) Effects of the mitochondrial respiratory chain on longevity in C. elegans. Exp Gerontol 56:245–255

    Article  CAS  PubMed  Google Scholar 

  77. Antebi A (2013) Regulation of longevity by the reproductive system. Exp Gerontol 28:596–602

    Article  CAS  Google Scholar 

  78. Hsin H, Kenyon C (1999) Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399:362–366

    Article  CAS  PubMed  Google Scholar 

  79. Goudeau J, Bellemin S, Toselli-Mollereau E, Shamalnasab M, Chen Y, Aguilaniu H (2011) Fatty acid desaturation links germ cell loss to longevity through NHR-80/HNF4 in C. elegans. PLoS Biol 9:e1000599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Arantes-Oliveira N, Berman JR, Kenyon C (2003) Healthy animals with extreme longevity. Science 302:611

    Article  CAS  PubMed  Google Scholar 

  81. Larsen PL, Albert PS, Riddle DL (1995) Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics 139:1567–1583

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Wolff S, Dillin A (2006) The trifecta of aging in Caenorhabditis elegans. Exp Gerontol 41:894–903

    Article  PubMed  Google Scholar 

  83. Chan TY (1999) Health hazards due to clenbuterol residues in food. J Toxicol Clin Toxicol 37:517–519

    Article  CAS  PubMed  Google Scholar 

  84. Yen M, Ewald MB (2012) Toxicity of weight loss agents. J Med Toxicol 8:145–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yaeger MJ, Mullin K, Ensley SM, Ware WA, Slavin RE (2012) Myocardial toxicity in a group of greyhounds administered ractopamine. Vet Pathol 49:569–573

    Article  CAS  PubMed  Google Scholar 

  86. Zhuang Z, Zhao Y, Wu Q, Li M, Liu H, Sun L, Gao W, Wang D (2014) Adverse effects from clenbuterol and ractopamine on nematode Caenorhabditis elegans and the underlying mechanism. PLoS ONE 9:e85482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Shi X, Gong H, Li Y, Wang C, Cheng L, Liu Z (2013) Graphene-based magnetic plasmonic nanocomposite for dual imaging and photothermal therapy. Biomaterials 34:4786–4793

    Article  CAS  PubMed  Google Scholar 

  88. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  CAS  PubMed  Google Scholar 

  89. Yang K, Li Y, Tan X, Peng R, Liu Z (2013) Behavior and toxicity of graphene and its functionalized derivatives in biological systems. Small 9:1492–1503

    Article  CAS  PubMed  Google Scholar 

  90. Ren M-X, Zhao L, Ding X-C, Krasteva N, Rui Q, Wang D-Y (2018) Developmental basis for intestinal barrier against the toxicity of graphene oxide. Particle Fibre Toxicol 15:26

    Article  Google Scholar 

  91. Ren M-X, Zhao L, Lv X, Wang D-Y (2017) Antimicrobial proteins in the response to graphene oxide in Caenorhabditis elegans. Nanotoxicology 11:578–590

    Article  CAS  PubMed  Google Scholar 

  92. Xiao G-S, Zhi L-T, Ding X-C, Rui Q, Wang D-Y (2017) Value of mir-247 in warning graphene oxide toxicity in nematode Caenorhabditis elegans. RSC Adv 7:52694–52701

    Article  CAS  Google Scholar 

  93. Wu Q-L, Zhao Y-L, Zhao G, Wang D-Y (2014) microRNAs control of in vivo toxicity from graphene oxide in Caenorhabditis elegans. Nanomedicine 10:1401–1410

    Article  CAS  PubMed  Google Scholar 

  94. Wu Q-L, Yin L, Li X, Tang M, Zhang T, Wang D-Y (2013) Contributions of altered permeability of intestinal barrier and defecation behavior to toxicity formation from graphene oxide in nematode Caenorhabditis elegans. Nanoscale 5:9934–9943

    Article  CAS  PubMed  Google Scholar 

  95. Wu Q-L, Zhao Y-L, Fang J-P, Wang D-Y (2014) Immune response is required for the control of in vivo translocation and chronic toxicity of graphene oxide. Nanoscale 6:5894–5906

    Article  CAS  PubMed  Google Scholar 

  96. Hahm J, Kim S, Paik Y (2011) GPA-9 is a novel regulator of innate immunity against Escherichia coli foods in adult Caenorhabditis elegans. Aging Cell 10:208–219

    Article  CAS  PubMed  Google Scholar 

  97. Kawli T, Tan M (2008) Neuroendocrine signals modulate the innate immunity of Caenorhabditis elegans through insulin signalling. Nat Immunol 9:1415–1424

    Article  CAS  PubMed  Google Scholar 

  98. Pukkila-Worley R, Ausubel FM (2012) Immune defense mechanisms in the Caenorhabditis elegans intestinal epithelium. Curr Opin Immunol 24:3–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Black HS (1987) Potential involvement of free radical reactions in ultraviolet light-mediated cutaneous damage. Photochem Photobiol 46:213–221

    Article  CAS  PubMed  Google Scholar 

  100. Friedberg EC (1985) DNA repair. W.H. Freeman and Company, New York

    Google Scholar 

  101. Murakami S, Johnson TE (1996) A genetic pathway conferring life extension and resistance by UV stress in Caenorhabditis elegans. Genetics 143:1207–1218

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Hayakawa T, Kato K, Jayakawa R, Hisamoto N, Katsumoto K, Takeda K, Ichijo H (2011) Regulation of anoxic death in Caenorhabditis elegans by mammalian apoptosis signal-regulating kinase (ASK) family proteins. Genetics 187:785–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kim DH, Ausubel FM (2005) Evolutionary perspectives on innate immunity from the study of Caenorhabditis elegans. Curr Opin Immunol 17:4–10

    Article  CAS  PubMed  Google Scholar 

  104. Zhao Y-L, Zhi L-T, Wu Q-L, Yu Y-L, Sun Q-Q, Wang D-Y (2016) p38 MAPK-SKN-1/Nrf signaling cascade is required for intestinal barrier against graphene oxide toxicity in Caenorhabditis elegans. Nanotoxicology 10:1469–1479

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, D. (2019). Molecular Basis for Reduced Lifespan Induced by Environmental Toxicants or Stresses. In: Molecular Toxicology in Caenorhabditis elegans. Springer, Singapore. https://doi.org/10.1007/978-981-13-3633-1_2

Download citation

Publish with us

Policies and ethics