Skip to main content

Molecular Basis for Adaptive Response to Environmental Toxicants or Stresses

  • Chapter
  • First Online:
Book cover Molecular Toxicology in Caenorhabditis elegans

Abstract

In nematodes, pretreatment with a mild stress or toxicant will induce an adaptive response to the following severe environmental toxicant or stress. In this chapter, we introduced the molecular alterations during the formation of adaptive response and the relevant molecular signaling pathways involved in the regulation of adaptive response induction. The future research focuses were further suggested and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang D-Y (2018) Nanotoxicology in Caenorhabditis elegans. Springer, Singapore

    Book  Google Scholar 

  2. Ren M-X, Zhao L, Ding X-C, Krasteva N, Rui Q, Wang D-Y (2018) Developmental basis for intestinal barrier against the toxicity of graphene oxide. Part Fibre Toxicol 15:26

    Article  PubMed  PubMed Central  Google Scholar 

  3. Xiao G-S, Chen H, Krasteva N, Liu Q-Z, Wang D-Y (2018) Identification of interneurons required for the aversive response of Caenorhabditis elegans to graphene oxide. J Nanbiotechnol 16:45

    Article  Google Scholar 

  4. Ding X-C, Rui Q, Wang D-Y (2018) Functional disruption in epidermal barrier enhances toxicity and accumulation of graphene oxide. Ecotoxicol Environ Saf 163:456–464

    Article  CAS  PubMed  Google Scholar 

  5. Zhao L, Kong J-T, Krasteva N, Wang D-Y (2018) Deficit in epidermal barrier induces toxicity and translocation of PEG modified graphene oxide in nematodes. Toxicol Res 7(6):1061–1070. https://doi.org/10.1039/C8TX00136G

    Article  CAS  Google Scholar 

  6. Shao H-M, Han Z-Y, Krasteva N, Wang D-Y (2018) Identification of signaling cascade in the insulin signaling pathway in response to nanopolystyrene particles. Nanotoxicology in press

    Google Scholar 

  7. Qu M, Xu K-N, Li Y-H, Wong G, Wang D-Y (2018) Using acs-22 mutant Caenorhabditis elegans to detect the toxicity of nanopolystyrene particles. Sci Total Environ 643:119–126

    Article  CAS  PubMed  Google Scholar 

  8. Dong S-S, Qu M, Rui Q, Wang D-Y (2018) Combinational effect of titanium dioxide nanoparticles and nanopolystyrene particles at environmentally relevant concentrations on nematodes Caenorhabditis elegans. Ecotoxicol Environ Saf 161:444–450

    Article  CAS  PubMed  Google Scholar 

  9. Li W-J, Wang D-Y, Wang D-Y (2018) Regulation of the response of Caenorhabditis elegans to simulated microgravity by p38 mitogen-activated protein kinase signaling. Sci Rep 8:857

    Article  PubMed  PubMed Central  Google Scholar 

  10. Xiao G-S, Zhao L, Huang Q, Yang J-N, Du H-H, Guo D-Q, Xia M-X, Li G-M, Chen Z-X, Wang D-Y (2018) Toxicity evaluation of Wanzhou watershed of Yangtze Three Gorges Reservoir in the flood season in Caenorhabditis elegans. Sci Rep 8:6734

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xiao G-S, Zhao L, Huang Q, Du H-H, Guo D-Q, Xia M-X, Li G-M, Chen Z-X, Wang D-Y (2018) Biosafety assessment of water samples from Wanzhou watershed of Yangtze Three Gorges Reservoir in the quiet season in Caenorhabditis elegans. Sci Rep 8:14102

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yin J-C, Liu R, Jian Z-H, Yang D, Pu Y-P, Yin L-H, Wang D-Y (2018) Di (2-ethylhexyl) phthalate-induced reproductive toxicity involved in DNA damage-dependent oocyte apoptosis and oxidative stress in Caenorhabditis elegans. Ecotoxicol Environ Saf 163:298–306

    Article  CAS  PubMed  Google Scholar 

  13. Xiao G-S, Zhi L-T, Ding X-C, Rui Q, Wang D-Y (2017) Value of mir-247 in warning graphene oxide toxicity in nematode Caenorhabditis elegans. RSC Adv 7:52694–52701

    Article  CAS  Google Scholar 

  14. Wu Q-L, Han X-X, Wang D, Zhao F, Wang D-Y (2017) Coal combustion related fine particulate matter (PM2.5) induces toxicity in Caenorhabditis elegans by dysregulating microRNA expression. Toxicol Res 6:432–441

    Article  CAS  Google Scholar 

  15. Zhao Y-L, Wang D-Y (2012) Formation and regulation of adaptive response in nematode Caenorhabditis elegans. Oxidat Med Cell Longev 2012:564093

    Article  Google Scholar 

  16. Wang D-Y, Liu P-D, Xing X-J (2010) Pretreatment with mild UV irradiation increases the resistance of nematode Caenorhabditis elegans to toxicity on locomotion behavior from metal exposure. Environ Toxicol Pharmacol 29:213–222

    Article  CAS  PubMed  Google Scholar 

  17. Wang D-Y, Xing X-J (2010) Pre-treatment with mild UV irradiation suppresses reproductive toxicity induced by subsequent cadmium exposure in nematodes. Ecotoxicol Environ Saf 73:423–429

    Article  CAS  PubMed  Google Scholar 

  18. Wang D-Y, Xing X-J (2009) Pre-treatment with mild metal exposure suppresses the neurotoxicity on locomotion behavior induced by the subsequent severe metal exposure in Caenorhabditis elegans. Environ Toxicol Pharmacol 28:459–464

    Article  CAS  PubMed  Google Scholar 

  19. Helmcke K, Aschner M (2010) Hormetic effect of methylmercury on Caenorhabditis elegans. Toxicol Appl Pharmacol 248:156–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yanase S, Ishii N (2008) Hypoxia exposure induced hormesis decreases mitochondrial superoxide radical levels via Ins/IGF-1 signaling pathway in a long-lived age-1 mutant of Caenorhabditis elegans. J Radiat Res 49:211–218

    Article  CAS  PubMed  Google Scholar 

  21. Webster CM, Deline ML, Watts JL (2013) Stress response pathways protect germ cells from omega-6 polyunsaturated fatty acid-mediated toxicity in Caenorhabditis elegans. Dev Biol 373:14–25

    Article  CAS  PubMed  Google Scholar 

  22. Kurino C, Furuhashi T, Sudoh K, Sakamoto K (2017) Isoamyl alcohol odor promotes longevity and stress tolerance via DAF-16 in Caenorhabditis elegans. Biochem Biophys Res Commun 485:395–399

    Article  CAS  PubMed  Google Scholar 

  23. Pickering AM, Staab TA, Tower J, Sieburth D, Davies KJ (2013) A conserved role for the 20S proteasome and Nrf2 transcription factor in oxidative stress adaptation in mammals, Caenorhabditis elegans and Drosophila melanogaster. J Exp Biol 216:543–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ermolaeva MA, Segref A, Dakhovnik A, Ou HL, Schneider JI, Utermöhlen O, Hoppe T, Schumacher B (2013) DNA damage in germ cells induces an innate immune response that triggers systemic stress resistance. Nature 501:416–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yee C, Yang W, Hekimi S (2014) The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C. elegans. Cell 157:897–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Spiro Z, Arslan MA, Somogyvari M, Nguyen MT, Smolders A, Dancso B, Nemeth N, Elek Z, Braeckman BP, Csermely P, Soti C (2012) RNA interference links oxidative stress to the inhibition of heat stress adaptation. Antioxid Redox Signal 17:890–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yanase S, Hartman PS, Ito A, Ishii N (1999) Oxidative stress pretreatment increases the X-radiation resistance of the nematode Caenorhabditis elegans. Mutat Res 426:31–39

    Article  CAS  PubMed  Google Scholar 

  28. Ye B-P, Rui Q, Wu Q-L, Wang D-Y (2010) Metallothioneins are required for formation of cross-adaptation response to neurobehavioral toxicity from lead and mercury exposure in nematodes. PLoS ONE 5:e14052

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kozlowski L, Garvis S, Bedet C, Palladino F (2014) The Caenorhabditis elegans HP1 family protein HPL-2 maintains ER homeostasis through the UPR and hormesis. Proc Natl Acad Sci U S A 111:5956–5961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu Q-L, Cao X-O, Yan D, Wang D-Y, Aballay A (2015) Genetic screen reveals link between maternal-effect sterile gene mes-1 and P. aeruginosa-induced neurodegeneration in C. elegans. J Biol Chem 290:29231–29239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun L-M, Zhi L-T, Shakoor S, Liao K, Wang D-Y (2016) microRNAs involved in the control of innate immunity in Candida infected Caenorhabditis elegans. Sci Rep 6:36036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu Y-L, Zhi L-T, Guan X-M, Wang D-Y, Wang D-Y (2016) FLP-4 neuropeptide and its receptor in a neuronal circuit regulate preference choice through functions of ASH-2 trithorax complex in Caenorhabditis elegans. Sci Rep 6:21485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhi L-T, Yu Y-L, Jiang Z-X, Wang D-Y (2017) mir-355 functions as an important link between p38 MAPK signaling and insulin signaling in the regulation of innate immunity. Sci Rep 7:14560

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhi L-T, Yu Y-L, Li X-Y, Wang D-Y, Wang D-Y (2017) Molecular control of innate immune response to Pseudomonas aeruginosa infection by intestinal let-7 in Caenorhabditis elegans. PLoS Pathog 13:e1006152

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yu Y-L, Zhi L-T, Wu Q-L, Jing L-N, Wang D-Y (2018) NPR-9 regulates innate immune response in Caenorhabditis elegans by antagonizing activity of AIB interneurons. Cell Mol Immunol 15:27–37

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, D. (2019). Molecular Basis for Adaptive Response to Environmental Toxicants or Stresses. In: Molecular Toxicology in Caenorhabditis elegans. Springer, Singapore. https://doi.org/10.1007/978-981-13-3633-1_14

Download citation

Publish with us

Policies and ethics