Skip to main content

Development of Low-Cadmium-Accumulating Rice

  • Chapter
  • First Online:
Book cover Cadmium Toxicity

Abstract

Cadmium (Cd) has an important impact on agriculture, and the excessive consumption of Cd from contaminated food crops can lead to toxicity in humans. Rice (Oryza sativa L.) is the greatest source of dietary intake of Cd for populations that consume rice as a staple food. However, there is currently no practical technique designed to substantially reduce the Cd contamination of rice. Here, we report a new rice cultivar, Koshihikari Kan No. 1, which does not accumulate Cd in the grains. Koshihikari Kan No. 1 is a mutant produced from ion-beam irradiation. This cultivar has a single-nucleotide deletion in OsNRAMP5, which encodes a manganese transporter that incidentally transports Cd into rice; this deletion results in a decreased root Cd uptake. In Cd-contaminated paddy fields, Koshihikari Kan No. 1 showed nearly undetectable Cd concentrations in the grains and exhibited no economically adverse traits. A DNA marker, which detects the mutated region of OsNRAMP5, has been developed to facilitate marker-assisted breeding of cultivars with low-Cd traits. Our findings will help to greatly reduce Cd levels in paddy rice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alloway BJ, Steinnes E. Anthropogenic additions of cadmium to soils. In: McLaughlin MJ, Singh BR, editors. Cadmium in soils and plants. The Netherlands: Kluwer Academic Publishers; 1999. p. 97–123.

    Chapter  Google Scholar 

  2. Tsuchiya K. Epidemiological-studies on cadmium in environment in Japan - etiology of itai-itai disease. Fed Proc. 1976;35:2412–8.

    CAS  PubMed  Google Scholar 

  3. FAO/WHO. Joint FAO/WHO Expert Committee on Food Additives, Seventy-third Meeting, Geneva, 8–17 June 2010. Summary and Conclusions; 2010. http://www.who.int/foodsafety/publications/chem/summary73.pdf.

  4. CODEX STAN 193-1995. Codex general standard for contaminants and toxins in foods and feed; 2008. www.fao.org/fileadmin/user_upload/agns/pdf/CXS_193e.pdf.

  5. IRRI. World Production and Consumption of Domestic Milled Rice; 2011. http://ricestat.irri.org/vis/wrs_quickCharts.php

  6. Arao T, Ishikawa S, Murakami M, Abe K, Maejima Y, Makino T. Heavy metal contamination of agricultural soil and countermeasures in Japan. Paddy Water Environ. 2010;8:247–57.

    Article  Google Scholar 

  7. Grant CA, Clarke JM, Duguid S, Chaney RL. Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci Total Environ. 2008;390:301–10.

    Article  CAS  Google Scholar 

  8. Arao T, Ae N. Genotypic variations in cadmium levels of rice grain. Soil Sci Plant Nutr. 2003;49:473–9.

    Article  CAS  Google Scholar 

  9. Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot. 2009;60:2677–88.

    Article  CAS  Google Scholar 

  10. Ishikawa S, Abe T, Kuramata M, Yamaguchi M, Ando T, Yamamoto T, Yano M. A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7. J Exp Bot. 2010;61:923–34.

    Article  CAS  Google Scholar 

  11. Ishikawa S, Ae N, Yano M. Chromosomal regions with quantitative trait loci controlling cadmium concentration in brown rice (Oryza sativa). New Phytol. 2005;168:345–50.

    Article  CAS  Google Scholar 

  12. Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc Natl Acad Sci U S A. 2012;109:19166–71.

    Article  CAS  Google Scholar 

  13. Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep. 2012;2:286.

    Article  Google Scholar 

  14. Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa NK. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr. 2006;52:464–9.

    Article  CAS  Google Scholar 

  15. Sasaki A, Yamaji N, Yokosho K, Ma JF. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell. 2012;24:2155–67.

    Article  CAS  Google Scholar 

  16. Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot. 2011;62:4843–50.

    Article  CAS  Google Scholar 

  17. Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H. OsHMA3, a P-1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol. 2011;189:190–9.

    Article  CAS  Google Scholar 

  18. Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF. Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci U S A. 2010;107:16500–5.

    Article  CAS  Google Scholar 

  19. Satoh-Nagasawa N, Mori M, Nakazawa N, Kawamoto T, Nagato Y, Sakurai K, Takahashi H, Watanabe A, Akagi H. Mutations in Rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol. 2012;53:213–24.

    Article  CAS  Google Scholar 

  20. Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc Natl Acad Sci U S A. 2011;108:20959–64.

    Article  CAS  Google Scholar 

  21. Yamaji N, Xia JX, Mitani-Ueno N, Yokosho K, Ma JF. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiol. 2013b;162:927–39.

    Article  CAS  Google Scholar 

  22. Kazama Y, Hirano T, Saito H, Liu Y, Ohbu S, Hayashi Y, Abe T. Characterization of highly efficient heavy-ion mutagenesis in Arabidopsis thaliana. BMC Plant Biol. 2011;11:161.

    Article  CAS  Google Scholar 

  23. Tanaka A, Shikazono N, Hase Y. Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. J Radiat Res. 2010;51:223–33.

    Article  CAS  Google Scholar 

  24. Takeuchi Y, Hori K, Suzuki K, Nonoue Y, Takemoto-Kuno Y, Maeda H, Sato H, Hirabayashi H, Ohta H, Ishii T, Kato H, Nemoto H, Imbe T, Ohtsubo K, Yano M, Ando I. Major QTLs for eating quality of an elite Japanese rice cultivar, Koshihikari, on the short arm of chromosome 3. Breed Sci. 2008;58:437–45.

    Article  Google Scholar 

  25. Ishikawa S, Makino T, Ito M, Harada K, Nakada H, Nishida I, Nishimura M, Tokunaga T, Shirao K, Yoshizawa C, Matsuyama M, Abe T, Arao T. Low-cadmium rice (Oryza sativa L.) cultivar can simultaneously reduce arsenic and cadmium concentrations in rice grains. Soil Sci Plant Nutr. 2016;62:327–39.

    Article  CAS  Google Scholar 

  26. Yamaji N, Sasaki A, Xia JX, Yokosho K, Ma JF. A node-based switch for preferential distribution of manganese in rice. Nat Commun. 2013a;4:2442.

    Article  Google Scholar 

  27. Honma T, Shiratori Y, Ohba H, Tsuchida T, Makino T, Abe T, Ishikawa S. Concentrations of nutrient content in rice variety KoshihikariKan no.1 and risk estimation of incidence of brown spot disease in different paddy fields. Jpn J Soil Sci Plant Nutr. 2017;88:213–20. (Japanense with English summary)

    CAS  Google Scholar 

  28. Junior LAZ, Rodrigues FA, Fontes RL, Korndorfer GH, Neves JC. Rice resistance to Brown spot mediated by silicon and its interaction with manganese. J Phytopathol. 2009;157:73–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Ishikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ishikawa, S., Abe, T., Kuramata, M., Hayashi, S. (2019). Development of Low-Cadmium-Accumulating Rice. In: Himeno, S., Aoshima, K. (eds) Cadmium Toxicity. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-3630-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3630-0_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3629-4

  • Online ISBN: 978-981-13-3630-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics