Skip to main content

Mitigation Strategies for Cadmium and Arsenic in Rice

  • Chapter
  • First Online:
Cadmium Toxicity

Abstract

Rice (Oryza sativa L.) is a major dietary source of not only cadmium (Cd) but also inorganic arsenic (iAs) in populations that consume rice as a staple food. When rice is cultivated under aerobic conditions, Cd in the paddy soil is solubilized and more likely to accumulate in the grain. Under flooded conditions iAs is more likely to accumulate in the grain. The application of intermittent irrigation consisting of 3 days of flooding and several days of drainage, during the heading stage of rice growth, was effective for simultaneously decreasing the accumulation of Cd and iAs in grain without negative effects on yield and quality. An alternative and promising strategy is a combination of water management and soil amendment to reduce the absorption of Cd and iAs. Growing a low-Cd-accumulating cultivar under aerobic conditions is the most practical way to simultaneously reduce the Cd and iAs contents in rice. Bacteria associated with the rice rhizosphere are involved in the formation of dimethylarsinic acid (DMA) in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. SCOOP (Scientific Co-operation on Questions Relating to Food). Assessment of dietary exposure to arsenic, cadmium, lead, mercury of the population of the European Union Member States; 2004. https://ec.europa.eu/food/sites/food/files/safety/docs/cs_contaminants_catalogue_scoop_3-2-11_heavy_metals_report_en.pdf.

  2. Hanaoka K, Yamamoto H, Kawashima K, Tagawa S, Kaise T. Ubiquity of arsenobetaine in marine animals and degradation of arsenobetaine by sedimentary microorganisms. Appl Organometal Chem. 1988;2:371–6.

    Article  CAS  Google Scholar 

  3. Francesconi KA, Edmonds JS. Arsenic and marine organisms. Adv Inorg Chem. 1997;44:147–89.

    Article  CAS  Google Scholar 

  4. IARC (International Agency for Research on Cancer). A review of human carcinogens-Part C: Arsenic, Metals, Fibres and Dusts. In: IARC monographs on the evaluation of carcinogenic risks to humans, vol. 100C. Lyon, France: International Agency for Research on Cancer; 2012. p. 41–93.

    Google Scholar 

  5. EFSA. Scientific opinion on arsenic in food. EFSA J. 2009;7:1351.

    Article  Google Scholar 

  6. Meharg AA, Zhao FJ. Arsenic & rice. London: Springer; 2012.

    Book  Google Scholar 

  7. Williams PN, Villada A, Deacon C, Raab A, Figuerola J, Green AJ, Feldmann J, Meharg AA. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol. 2007;41:6854–9.

    Article  CAS  Google Scholar 

  8. Oguri T, Yoshinaga J, Tao H, Nakazato T. Inorganic arsenic in the Japanese diet: daily intake and source. Arch Environ Contam Toxicol. 2014;66:100–12.

    Article  CAS  Google Scholar 

  9. Oguri T, Yoshinaga J. Daily inorganic arsenic intake of the japanese estimated by a probabilistic approach. Jpn J Hyg. 2014;69:177–86. (in Japanese)

    Article  Google Scholar 

  10. MAFF. Survey of cadmium levels in agricultural products in Japan and estimation of cadmium intake in Japan. 2016. http://www.maff.go.jp/j/press/syouan/nouan/pdf/160223-01.pdf. Accessed 30 Jun 2017, (in Japanese).

  11. Codex Alimentarius Commission In. Codex stan 193-1995, Codex general standard for contaminants and toxins in foods and feed. 2008. http://www.fao.org/fileadmin/user_upload/livestockgov/documents/1_CXS_193e.pdf. Accessed 30 Jun 2017.

  12. Codex Alimentarius Commission In. REP16/CF Joint FAO/WHO Food Standards Programme Codex Alimentarius Commission 39th Session Rome, Italy, 27 June–1 July 2016. http://www.fao.org/fao-who-codexalimentarius/sh-proxy/zh/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-735-10%252FReport%252FREP16_CFe.pdf. Accessed 30 Jun 2017.

  13. MAFF. Survey of arsenic levels in brown rice and polished rice produced in Japan. 2014. http://www.maff.go.jp/j/press/syouan/nouan/pdf/140221-01.pdf. Accessed 30 Jun 2017, (in Japanese).

  14. Arao T, Kawasaki A, Baba K, Mori S, Matsumoto S. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environ Sci Technol. 2009;43:9361–7.

    Article  CAS  Google Scholar 

  15. Takahashi Y, Minamikawa R, Hattori KH, Kurishima K, Kihou N, Yuita K. Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environ Sci Technol. 2004;38:1038–44.

    Article  CAS  Google Scholar 

  16. Naito S, Matsumoto E, Shindoh K, Nishimura T. Effects of polishing, cooking, and storing on total arsenic and arsenic species concentrations in rice cultivated in Japan. Food Chem. 2015;168:294–301.

    Article  CAS  Google Scholar 

  17. Nakamura K, Katou H, Suzuki K, Honma T. Air-filled porosity as a key to reducing dissolved arsenic and cadmium concentrations in paddy soils. J Environ Qual. 2018;47:496–503.

    Article  CAS  Google Scholar 

  18. Yamaguchi N, Nakamura T, Dong D, Takahashi Y, Amachi S, Makino T. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere. 2011;83:925–32.

    Article  CAS  Google Scholar 

  19. Kawasaki A, Arao T, Ishikawa S. Reducing cadmium content of rice grains by means of flooding and a few problems. Jpn J Hyg. 2012;67:478–83. (in Japanese)

    Article  CAS  Google Scholar 

  20. Matsumoto S, Kasuga J, Taiki N, Makino T, Arao T. Reduction of the risk of arsenic accumulation in rice by the water management and material application in relation to phosphate status. J Plant Inter. 2015a;10:65–74.

    CAS  Google Scholar 

  21. Hu P, Huang J, Ouyang Y, Wu L, Song J, Wang S, Li Z, Han C, Zhou L, Huang Y, Luo Y, Christie P. Water management affects arsenic and cadmium accumulation in different rice cultivars. Environ Geochem Health. 2013;35:767–78.

    Article  CAS  Google Scholar 

  22. Honma T, Ohba H, Kaneko-Kadokura A, Makino T, Nakamura K, Katou H. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environ Sci Technol. 2016a;50:4178–5.

    Article  CAS  Google Scholar 

  23. Suda A, Baba K, Yamaguchi N, Akahane I, Makino T. The effects of soil amendments on arsenic concentrations in soil solutions after long-term flooded incubation. Soil Sci Plant Nutri. 2015;61:592–602.

    Article  CAS  Google Scholar 

  24. Suda A, Baba K, Akahane I, Makino T. Use of water treatment residue containing polysilicate iron to stabilize arsenic in flooded soils and attenuate arsenic uptake by rice Oryza sativa. Soil Sci Plant Nutri. 2016;62:111–6.

    Article  CAS  Google Scholar 

  25. Komárek M, Vaněk A, Ettler V. Chemical stabilization of metals and arsenic in contaminated soils using oxides - a review. Environ Pollut. 2013;172:9–22.

    Article  Google Scholar 

  26. Bang S, Johnson MD, Korfiatis GP, Meng X. Chemical reactions between arsenic and zero-valent iron in water. Water Res. 2005;39:763–70.

    Article  CAS  Google Scholar 

  27. Sun H, Wang L, Zhang R, Sui J, Xu G. Treatment of groundwater polluted by arsenic compounds by zero valent iron. J Hazard Mater. 2006;129:297–303.

    Article  CAS  Google Scholar 

  28. Kumpiene J, Ore S, Renella G, Mench M, Lagerkvist A, Maurice C. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environ Pollut. 2006;144:62–9.

    Article  CAS  Google Scholar 

  29. Matsumoto S, Kasuga J, Taiki N, Makino T, Arao T. Inhibition of arsenic accumulation in Japanese rice by the application of iron and silicate materials. Catena. 2015b;135:328–35.

    Article  CAS  Google Scholar 

  30. Matsumoto S, Kasuga J, Makino T, Arao T. Evaluation of the effects of application of iron materials on the accumulation and speciation of arsenic in rice grain grown on uncontaminated soil with relatively high levels of arsenic. Environ Exp Bot. 2016;125:42–51.

    Article  CAS  Google Scholar 

  31. Makino T, Nakamura K, Katou H, Ishikawa S, Ito M, Honma T, Miyazaki N, Takehisa K, Sano S, Matsumoto S, Suda A, Baba K, Kawasaki A, Yamaguchi N, Akahane I, Tomizawa M Arao T. Simultaneous decrease of arsenic and cadmium in rice Oryza sativa L plants cultivated under submerged field conditions by the application of iron. Soil Sci Plant Nutri. 2016;62:340–8.

    Article  CAS  Google Scholar 

  32. Seyfferth AL, Webb SM, Andrews JC, Fendorf S. Arsenic localization, speciation, and co-occurrence with iron on rice (Oryza sativa L.) roots having variable Fe coatings. Environ Sci Technol. 2010;44:8108–13.

    Article  CAS  Google Scholar 

  33. Yamaguchi N, Ohkura T, Takahashi Y, Maejima Y, Arao T. Arsenic distribution and speciation near rice roots influenced by iron plaques and redox conditions of the soil matrix. Environ Sci Technol. 2014;48:1549–56.

    Article  CAS  Google Scholar 

  34. Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci U S A. 2008;105:9931–5.

    Article  CAS  Google Scholar 

  35. Seyfferth AL, Morris AH, Gill R, Kearns KA, Mann JN, Paukett M, Leskanic C. Soil incorporation of silica-rich rice husk decreases inorganic arsenic in rice grain. J Agric Food Chem. 2016;64:3760–6.

    Article  CAS  Google Scholar 

  36. Suda A, Makino T. Effect of organic amendments on arsenic solubilization in soils during long-term flooded incubation. In J Environ Sci Technol. 2016;13:2375–82.

    Article  CAS  Google Scholar 

  37. Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc Natl Acad Sci U S A. 2012;109:19166–71.

    Article  CAS  Google Scholar 

  38. Ishikawa S, Makino T, Ito M, Harada K, Nakada H, Nishida I, Nishimura M, Tokunaga T, Shirao K, Yoshizawa C, Matsuyama M, Abe T, Arao T. Low cadmium rice Oryza sativa L cultivar can simultaneously reduce arsenic and cadmium concentrations in rice grains. Soil Sci Plant Nutri. 2016;62:327–39.

    Article  CAS  Google Scholar 

  39. Kuramata M, Abe T, Matsumoto S, Ishikawa S. Arsenic accumulation and speciation in Japanese paddy rice cultivars. Soil Sci Plant Nutri. 2011;57:248–58.

    Article  CAS  Google Scholar 

  40. Song WY, Yamaki T, Yamaji N, Ko D, Jung KH, Fujii-Kashino M, An G, Martinoia E, Lee Y, Ma JF. A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc Natl Acad Sci U S A. 2014;111:15699–704.

    Article  CAS  Google Scholar 

  41. Chen Y, Moore KL, Miller AJ, McGrath SP, Ma JF, Zhao FJ. The role of nodes in arsenic storage and distribution in rice. J Exp Bot. 2015;66:3717–24.

    Article  CAS  Google Scholar 

  42. Hayashi S, Kuramata M, Abe T, Takagi H, Ozawa K, Ishikawa S. Phytochelatin synthase OsPCS1 plays a crucial role in reducing arsenic levels in rice grains. Plant J. 2017;91(5):840–8. https://doi.org/10.1111/tpj.13612.

    Article  CAS  Google Scholar 

  43. Duan GL, Kamiya T, Ishikawa S, Arao T, Fujiwara T. Expressing ScACR3 in rice enhanced arsenite efflux and reduced arsenic accumulation in rice grains. Plant Cell Physiol. 2012;53:154–63.

    Article  CAS  Google Scholar 

  44. Clemens S, Ma JF. Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu Rev Plant Biol. 2016;67:489–512.

    Article  CAS  Google Scholar 

  45. Arao T, Kawasaki A, Baba K, Matsumoto S. Effects of arsenic compound amendment on arsenic speciation in rice grain. Environ Sci Technol. 2011;45:1291–7.

    Article  CAS  Google Scholar 

  46. Li RY, Ago Y, Liu WJ, Mitani N, Feldmann J, McGrath SP, Ma JF, Zhao FJ. The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol. 2009;150:2071–80.

    Article  CAS  Google Scholar 

  47. Carey AM, Scheckel KG, Lombi E, Newville M, Choi Y, Norton GJ, Charnock JM, Feldmann J, Price AH, Meharg AA. Grain unloading of arsenic species in rice. Plant Physiol. 2010;152:309–19.

    Article  CAS  Google Scholar 

  48. Lomax C, Liu WJ, Wu L, Xue K, Xiong J, Zhou J, McGrath SP, Meharg AA, Miller AJ, Zhao FJ. Methylated arsenic species in plants originate from soil microorganisms. New Phytol. 2012;193:665–72.

    Article  CAS  Google Scholar 

  49. Kuramata M, Sakakibara F, Kataoka R, Abe T, Asano M, Baba K, Takagi K Ishikawa S. Arsenic biotransformation by Streptomyces sp. isolated from rice rhizosphere. Environ Microbiol. 2015;17:1897–909.

    Article  CAS  Google Scholar 

  50. Kuramata M, Abe T, Kawasaki A, Ebana K, Shibaya T, Yano M, Ishikawa S. Genetic diversity of arsenic accumulation in rice and QTL analysis of methylated arsenic in rice grains. Rice. 2013;6:3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohito Arao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arao, T. (2019). Mitigation Strategies for Cadmium and Arsenic in Rice. In: Himeno, S., Aoshima, K. (eds) Cadmium Toxicity. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-3630-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3630-0_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3629-4

  • Online ISBN: 978-981-13-3630-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics