Skip to main content

Abstract

With the rapid development of flexible electronic devices towards the large-area and ultra-thin direction, it is increasingly demanded to investigate how to peel flexible devices from rigidly prepared carrier effectively. Laser lift-off (LLO) is an emerging technology in the field of microelectronics due to the high speed, simplicity, and cost-efficiency, etc. In this chapter, the LLO mechanism of the ultra-thin polyimide (PI) film (thinner than 5 μm) from the rigid glass carrier was revealed preliminarily in combination with the gas products generated by the laser irradiation. The impact effect of insufficient gas products was found difficult to peel the PI film off the glass carrier completely. Excess gases and accompanied high impact effect should lead to wrinkles or cracking of the ultra-thin PI film. Changes in the residual interface adhesion strength were also interpreted relating to the evolution of interface microstructure. Process parameters were optimized considering the laser fluence and irradiation time. It was found that the strategy of low-energy laser pulse combined with multiple irradiations can achieve a reliable LLO of the ultra-thin PI film. This study provides an attractive route to peel flexible devices from the glass carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meitl MA, Zhu Z-T, Kumar V, Lee KJ, Feng X, Huang YY, Adesida I, Nuzzo RG, Rogers JA (2006) Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat Mater 5(1):33–38

    Article  Google Scholar 

  2. Feng X, Meitl MA, Bowen AM, Huang Y, Nuzzo RG, Rogers JA (2007) Competing fracture in kinetically controlled transfer printing. Langmuir 23(25):12555–12560

    Article  Google Scholar 

  3. Kim T-H, Carlson A, Ahn J-H, Won SM, Wang S, Huang Y, Rogers JA (2009) Kinetically controlled, adhesiveless transfer printing using microstructured stamps. Appl Phys Lett 94(11):113502

    Article  Google Scholar 

  4. Peng B, Huang Y, Yin Z, Xiong Y (2011) Analysis of interfacial peeling in IC chip pick-up process. J Appl Phys 110(7):073508

    Article  Google Scholar 

  5. Liu Z, Huang Y, Chen J, Yin Z (2014) Tunable peeling technique and mechanism of thin chip from compliant adhesive tapes. IEEE Trans Compon Packag Manuf Technol 4(4):560–568

    Article  Google Scholar 

  6. Liu Z, Huang YA, Liu H, Chen J, Yin Z (2014) Reliable peeling of ultrathin die with multineedle ejector. IEEE Trans Compon Packag Manuf Technol 4(9):1545–1554

    Article  Google Scholar 

  7. Jain K, Klosner M, Zemel M, Raghunandan S (2005) Flexible electronics and displays: High-resolution, roll-to-roll, projection lithography and photoablation processing technologies for high-throughput production. Proc IEEE 93(8):1500–1510

    Google Scholar 

  8. Lo C-Y, Hiitola-Keinänen J, Huttunen O-H, Petäjä J, Hast J, Maaninen A, Kopola H, Fujita H, Toshiyoshi H (2009) Novel roll-to-roll lift-off patterned active-matrix display on flexible polymer substrate. Microelectron Eng 86(4):979–983

    Google Scholar 

  9. Chen J, Liu H, Huang Y, Yin Z (2016) High-rate roll-to-roll stack and lamination of multilayer structured membrane electrode assembly. J Manuf Process 23:175–182

    Google Scholar 

  10. Huang Y, Chen J, Yin Z, Xiong Y (2011) Roll-to-roll processing of flexible heterogeneous electronics with low interfacial residual stress. IEEE Trans Compon Packag Manuf Technol 1(9):1368–1377

    Google Scholar 

  11. Peng B, Huang Y, Yin Z, Xiong Y (2012) Competing fracture modeling of thin chip pick-up process. IEEE Trans Compon Packag Manuf Technol 2(7):1217–1225

    Google Scholar 

  12. Liu Z, Wan X, Huang Y, Chen J, Yin Z (2018) Theoretical and experimental studies of competing fracture for flexible chip-adhesive-substrate composite structure. IEEE Trans Compon Packag Manuf Technol 8(1):57–64

    Google Scholar 

  13. Huang Y, Liu H, Xu Z, Chen J, Yin Z (2018) Conformal peeling of device-on-substrate system in flexible electronic assembly. IEEE Trans Compon Packag Manuf Technol 8(8):1496–1506

    Google Scholar 

  14. Park KI, Son JH, Hwang GT, Jeong CK, Ryu J, Koo M, Choi I, Lee SH, Byun M, Wang ZL (2014) Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv Mater 26(16):2514–2520

    Google Scholar 

  15. Do YH, Jung WS, Kang MG, Kang CY, Yoon SJ (2013) Preparation on transparent flexible piezoelectric energy harvester based on PZT films by laser lift-off process. Sens Actuators A 200:51–55

    Google Scholar 

  16. Jeong J-W, McCall Jordan G, Shin G, Zhang Y, Al-Hasani R, Kim M, Li S, Sim Joo Y, Jang K-I, Shi Y, Hong Daniel Y, Liu Y, Schmitz Gavin P, Xia L, He Z, Gamble P, Ray Wilson Z, Huang Y, Bruchas Michael R, Rogers John A (2015) Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 162(3):662–674

    Google Scholar 

  17. McCall JG, T-i Kim, Shin G, Huang X, Jung YH, Al-Hasani R, Omenetto FG, Bruchas MR, Rogers JA (2013) Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics. Nat Protoc 8:2413

    Google Scholar 

  18. T-i Kim, McCall JG, Jung YH, Huang X, Siuda ER, Li Y, Song J, Song YM, Pao HA, Kim R-H, Lu C, Lee SD, Song I-S, Shin G, Al-Hasani R, Kim S, Tan MP, Huang Y, Omenetto FG, Rogers JA, Bruchas MR (2013) Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340(6129):211–216

    Google Scholar 

  19. Lee HS, Chung J, Hwang GT, Jeong CK, Jung Y, Kwak JH, Kang H, Byun M, Kim WD, Hur S, Oh SH, Lee KJ (2014) Flexible inorganic piezoelectric acoustic nanosensors for biomimetic artificial hair cells. Adv Func Mater 24(44):6914–6921

    Google Scholar 

  20. Hwang GT, Annapureddy V, Han JH, Joe DJ, Baek C, Park DY, Kim DH, Park JH, Jeong CK, Park KI, Choi JJ, Kim DK, Ryu J, Lee KJ (2016) Self-powered wireless sensor node enabled by an aerosol-deposited pzt flexible energy harvester. Adv Energy Mater 6(13):1600237

    Google Scholar 

  21. Park DY, Joe DJ, Kim DH, Park H, Han JH, Jeong CK, Park H, Park JG, Joung B, Lee KJ (2017) Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv Mater 29(37):1702308

    Google Scholar 

  22. Shaw-Stewart JRH, Lippert TK, Nagel M, Nüesch FA, Wokaun A (2012) Sequential printing by laser-induced forward transfer to fabricate a polymer light-emitting diode pixel. ACS Appl Mater Interfaces 4(7):3535–3541

    Google Scholar 

  23. Shaw-Stewart JRH, Mattle T, Lippert TK, Nagel M, Nüesch FA, Wokaun A (2013) The fabrication of small molecule organic light-emitting diode pixels by laser-induced forward transfer. J Appl Phys 113(4):043104

    Google Scholar 

  24. Sanchez-Aniorte MI, Mouhamadou B, Alloncle AP, Sarnet T, Delaporte P (2016) Laser-induced forward transfer for improving fine-line metallization in photovoltaic applications. Appl Phys A 122(6):595

    Google Scholar 

  25. Chen Y, Munoz-Martin D, Morales M, Molpeceres C, Sánchez-Cortezon E, Murillo-Gutierrez J (2016) Laser induced forward transfer of high viscosity silver paste for new metallization methods in photovoltaic and flexible electronics industry. Phys Procedia 83:204–210

    Google Scholar 

  26. Bohandy J, Kim B, Adrian F (1986) Metal deposition from a supported metal film using an excimer laser. J Appl Phys 60(4):1538–1539

    Google Scholar 

  27. Bian J, Zhou L, Wan X, Liu M, Zhu C, Huang Y, Yin Z (2019) Experimental study of laser lift-off of ultra-thin polyimide film for flexible electronics. Sci China Technol Sci 62(2):233–242

    Google Scholar 

  28. Delmdahl R, Pätzel R, Brune J (2013) Large-area laser-lift-off processing in microelectronics. Phys Procedia 41:241–248

    Google Scholar 

  29. Lee Y, Kim T-S, Min S-Y, Xu W, Jeong S-H, Seo H-K, Lee T-W (2014) Individually position-addressable metal-nanofiber electrodes for large-area electronics. Adv Mater 26(47):8010–8016

    Google Scholar 

  30. Lee CH, Kim SJ, Oh Y, Kim MY, Yoon Y-J, Lee H-S (2010) Use of laser lift-off for flexible device applications. J Appl Phys 108(10):102814

    Google Scholar 

  31. Wan S, K. MB, Brandon L, Xiaowei Y, Joshua S, Xian H, Heng P (2017) Low-cost manufacturing of bioresorbable conductors by evaporation-condensation-mediated laser printing and sintering of Zn nanoparticles. Adv Mater 29(26):1700172

    Google Scholar 

  32. Constantinescu C, Diallo AK, Rapp L, Cremillieu P, Mazurczyk R, Serein-Spirau F, Lère-Porte JP, Delaporte P, Alloncle AP, Videlot-Ackermann C (2015) Laser-induced forward transfer of multi-layered structures for OTFT applications. Appl Surf Sci 336:11–15

    Google Scholar 

  33. Eisenhaure J, Kim S (2016) Laser-driven shape memory effect for transfer printing combining parallelism with individual object control. Adv Mater Technol 1(7):1600098

    Google Scholar 

  34. Marinov V, Swenson O, Miller R, Sarwar F, Atanasov Y, Semler M, Datta S (2012) Laser-enabled advanced packaging of ultrathin bare dice in flexible substrates. IEEE Trans Compon Packag Manuf Technol 2(4):569–577

    Google Scholar 

  35. Saeidpourazar R, Sangid MD, Rogers JA, Ferreira PM (2012) A prototype printer for laser driven micro-transfer printing. J Manuf Process 14(4):416–424

    Google Scholar 

  36. Bäuerle D (2011) Laser processing and chemistry. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  37. Kittel C (2005) Introduction to solid state physics. Wiley, New York

    Google Scholar 

  38. Choi Y-Y, Choi K-H, Kim H-K (2011) Characteristics of a transparent GaON sacrificial layer for transfer of devices from sapphire to a flexible substrate. J Electrochem Soc 158(11):J349–J353

    Google Scholar 

  39. Tang L, Wang Y, Cheng G, Manfra MJ, Sands TD (2012) Free standing GaN nano membrane by laser lift-off method. In: MRS proceedings, vol 1432, mrss12-1432-g1403-1402

    Google Scholar 

  40. Arnold CB, Serra P, Piqué A (2007) Laser direct-write techniques for printing of complex materials. MRS Bull 32(1):23–31

    Google Scholar 

  41. Kim K, Kim SY, Lee J-L (2014) Flexible organic light-emitting diodes using a laser lift-off method. J Mater Chem C 2(12):2144–2149

    Google Scholar 

  42. Tsakalakos L, Sands T, Carleton E, Yu KM (2003) Modification of (Pb,La)(Zr,Ti)O3 thin films during pulsed laser liftoff from MgO substrates. J Appl Phys 94(6):4047–4052

    Google Scholar 

  43. Kim SJ, Lee HE, Choi H, Kim Y, We JH, Shin JS, Lee KJ, Cho BJ (2016) High-performance flexible thermoelectric power generator using laser multiscanning lift-off process. ACS Nano 10(12):10851–10857

    Google Scholar 

  44. Lee HE, Kim S, Ko J, Yeom H-I, Byun C-W, Lee SH, Joe DJ, Im T-H, Park S-HK, Lee KJ (2016) Skin-like oxide thin-film transistors for transparent displays. Adv Func Mater 26(34):6170–6178

    Google Scholar 

  45. Seungjun K, Hwan SJ, Hyun LS, Kuk YB, Kwi-Il P, Keon LH, Myunghwan B, Jae LK (2014) Flexible crossbar-structured resistive memory arrays on plastic substrates via inorganic-based laser lift-off. Adv Mater 26(44):7480–7487

    Google Scholar 

  46. Phipps C (2007) Laser ablation and its applications, vol 129. Springer, US

    Google Scholar 

  47. Dang B, Andry P, Tsang C, Maria J, Polastre R, Trzcinski R, Prabhakar A, Knickerbocker J (2010) CMOS compatible thin wafer processing using temporary mechanical wafer, adhesive and laser release of thin chips/wafers for 3D integration. In: Proceedings 60th electronic components and technology conference (ECTC), 1–4 June 2010, pp 1393–1398

    Google Scholar 

  48. Liu Z, Tang P, Huang Y, Yin Z (2014) Experimental estimation of adhesive fracture energy of compliant adhesive tape. In: 15th international conference on electronic packaging technology, 12–15 Aug 2014, pp 842–846

    Google Scholar 

  49. MacCarthy N, Wood T, Ameri H, O’Connell D, Alderman J (2006) A laser release method for producing prototype flexible retinal implant devices. Sens Actuators A 132(1):296–301

    Google Scholar 

  50. Doany FE, Narayan C (1997) Laser release process to obtain freestanding multilayer metal-polyimide circuits. IBM J Res Dev 41(1–2):151–157

    Google Scholar 

  51. Delmdahl R, Fricke M, Fechner B (2014) Laser lift-off systems for flexible-display production. J Inform Disp 15(1):1–4

    Google Scholar 

  52. Küper S, Brannon J, Brannon K (1993) Threshold behavior in polyimide photoablation: Single-shot rate measurements and surface-temperature modeling. Appl Phys A 56(1):43–50

    Google Scholar 

  53. Babu S, D’Couto G, Egitto F (1992) Excimer laser induced ablation of polyetheretherketone, polyimide, and polytetrafluoroethylene. J Appl Phys 72(2):692–698

    Google Scholar 

  54. D’Couto GC, Babu SV (1994) Heat transfer and material removal in pulsed excimer-laser-induced ablation: Pulsewidth dependence. J Appl Phys 76(5):3052–3058

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongAn Huang .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, Y., Yin, Z., Wan, X. (2019). Laser Lift-off. In: Modeling and Application of Flexible Electronics Packaging. Springer, Singapore. https://doi.org/10.1007/978-981-13-3627-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3627-0_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3626-3

  • Online ISBN: 978-981-13-3627-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics