Skip to main content

Abstract

This chapter describes theoretical predictions of the peeling behavior of adhesively bonded joints under substrate tension condition. The substrate tension can enhance the ERR of interfacial peeling between the chip and substrate, which may improve the chip peelability. The proposed approach can be extended to predict the delamination behavior of bonded structures such as composite laminates and flexible electronics. Analytical solutions of balanced and unbalanced adhesively bonded joints were first determined combining mixed force and displacement boundary conditions. A mechanical model predicting the debonding behavior of a periodic array of chips adhesively bonded to a stretched substrate was also proposed via the multi-segment analysis. Effects of key factors including the distance between adjacent chips, chip length, and material properties of the adhesive and substrate layers were considered. The approaches were proved useful in analyzing various adhesively bonded structures including the stiffened plate, single-strap, and single-lap joints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deng J, Lee MM, Moy SS (2004) Stress analysis of steel beams reinforced with a bonded CFRP plate. Compos Struct 65(2):205–215

    Article  Google Scholar 

  2. Campilho RD, De Moura M, Domingues J (2008) Using a cohesive damage model to predict the tensile behaviour of CFRP single-strap repairs. Int J Solids Struct 45(5):1497–1512

    Article  Google Scholar 

  3. Cheng J, Taheri F (2006) A smart single-lap adhesive joint integrated with partially distributed piezoelectric patches. Int J Solids Struct 43(5):1079–1092

    Article  Google Scholar 

  4. Sun J-Y, Lu N, Yoon J, Oh K-H, Suo Z, Vlassak JJ (2012) Debonding and fracture of ceramic islands on polymer substrates. J Appl Phys 111(1):013517

    Article  Google Scholar 

  5. Jiang Z, Huang Y, Chandra A (1997) Thermal stresses in layered electronic assemblies. J Electron Packag 119(2):127–132

    Article  Google Scholar 

  6. Cheng H, Wu J, Li M, Kim D-H, Kim Y-S, Huang Y, Kang Z, Hwang K, Rogers J (2011) An analytical model of strain isolation for stretchable and flexible electronics. Appl Phys Lett 98(6):061902

    Article  Google Scholar 

  7. Huang Y, Liu H, Xu Z, Chen J, Yin Z (2018) Conformal peeling of device-on-substrate system in flexible electronic assembly. IEEE Trans Compon Packag Manuf Technol 8(8):1496–1506

    Article  Google Scholar 

  8. Liu Z, Huang Y, Chen J, Yin Z (2014) Tunable peeling technique and mechanism of thin chip from compliant adhesive tapes. IEEE Trans Compon Packag Manuf Technol 4(4):560–568

    Article  Google Scholar 

  9. Liu Z, Huang YA, Liu H, Chen J, Yin Z (2014) Reliable peeling of ultrathin die with multineedle ejector. IEEE Trans Compon Packag Manuf Technol 4(9):1545–1554

    Article  Google Scholar 

  10. Huang Y, Chen J, Yin Z, Xiong Y (2011) Roll-to-roll processing of flexible heterogeneous electronics with low interfacial residual stress. IEEE Trans Compon Packag Manuf Technol 1(9):1368–1377

    Article  Google Scholar 

  11. Peng B, Huang Y, Yin Z, Xiong Y (2011) Analysis of interfacial peeling in IC chip pick-up process. J Appl Phys 110(7):073508

    Article  Google Scholar 

  12. Feng Y, Wu L (2001) Analysis of interfacial thermal stresses of chip-substrate structure. Int J Solids Struct 38(9):1551–1562

    Article  Google Scholar 

  13. Park SI, Ahn JH, Feng X, Wang S, Huang Y, Rogers JA (2008) Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates. Adv Func Mater 18(18):2673–2684

    Article  Google Scholar 

  14. Liu Z, Wan X, Huang Y, Chen J, Yin Z (2018) Theoretical and experimental studies of competing fracture for flexible chip-adhesive-substrate composite structure. IEEE Trans Compon Packag Manuf Technol 8(1):57–64

    Article  Google Scholar 

  15. Wang K, Huang Y, Chandra A, Hu KX (2000) Interfacial shear stress, peeling stress, and die cracking stress in trilayer electronic assemblies. In: ITHERM 2000. The seventh intersociety conference on thermal and thermomechanical phenomena in electronic systems (Cat. No.00CH37069), 23–26 May 2000. IEEE, pp 56–64

    Google Scholar 

  16. Liu Z, Huang Y, Yin Z, Bennati S, Valvo PS (2014) A general solution for the two-dimensional stress analysis of balanced and unbalanced adhesively bonded joints. Int J Adhes Adhes 54:112–123

    Article  Google Scholar 

  17. Zou G, Shahin K, Taheri F (2004) An analytical solution for the analysis of symmetric composite adhesively bonded joints. Compos Struct 65(3):499–510

    Article  Google Scholar 

  18. Delale F, Erdogan F, Aydinoglu M (1981) Stresses in adhesively bonded joints: a closed-form solution. J Compos Mater 15(3):249–271

    Article  Google Scholar 

  19. Cheng S, Chen D, Shi Y (1991) Analysis of adhesive-bonded joints with nonidentical adherends. J Eng Mech 117(3):605–623

    Article  Google Scholar 

  20. Zhao X, Adams R, da Silva LF (2010) A new method for the determination of bending moments in single lap joints. Int J Adhes Adhes 30(2):63–71

    Article  Google Scholar 

  21. Yang C, Pang S-S (1996) Stress-strain analysis of single-lap composite joints under tension. J Eng Mater Technol 118(2):247–255

    Article  Google Scholar 

  22. Yang C, Chadegani A, Tomblin JS (2008) Strain energy release rate determination of prescribed cracks in adhesively-bonded single-lap composite joints with thick bondlines. Compos B Eng 39(5):863–873

    Article  Google Scholar 

  23. Chadegani A, Batra RC (2011) Analysis of adhesive-bonded single-lap joint with an interfacial crack and a void. Int J Adhes Adhes 31(6):455–465

    Article  Google Scholar 

  24. Chadegani A, Yang C, Smeltzer SS (2012) Adhesive-bonded composite joints analysis with delaminated surface ply using strain-energy release rate. J Aircraft 49(2):503–520

    Article  Google Scholar 

  25. Liu Z, Valvo PS, Huang Y, Yin Z (2013) Cohesive failure analysis of an array of IC chips bonded to a stretched substrate. Int J Solids Struct 50(22–23):3528–3538

    Google Scholar 

  26. Goland M, Reissner E (1944) The stresses in cemented joints. J Appl Phys 11(1):A17–A27

    Google Scholar 

  27. Hart-Smith LJ (1973) Adhesive-bonded single-lap joints. National Aeronautics and Space Administration (NASA)

    Google Scholar 

  28. Adams R, Mallick V (1992) A method for the stress analysis of lap joints. J Adhes 38(3–4):199–217

    Article  Google Scholar 

  29. Saiki N, Inaba K, Kishimoto K, Seno H, Ebe K (2010) Study on peeling behavior in pick-up process of IC chip with adhesive tapes. J Solid Mech Mater Eng 4(7):1051–1060

    Article  Google Scholar 

  30. Gleich D, Van Tooren M, Beukers A (2001) Analysis and evaluation of bondline thickness effects on failure load in adhesively bonded structures. J Adhes Sci Technol 15(9):1091–1101

    Article  Google Scholar 

  31. da Silva LF, das Neves PJ, Adams R, Spelt J (2009) Analytical models of adhesively bonded joints—part I: literature survey. Int J Adhes Adhes 29(3):319–330

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongAn Huang .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, Y., Yin, Z., Wan, X. (2019). Tension-Assisted Peeling. In: Modeling and Application of Flexible Electronics Packaging. Springer, Singapore. https://doi.org/10.1007/978-981-13-3627-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3627-0_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3626-3

  • Online ISBN: 978-981-13-3627-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics