Skip to main content

Abstract

Issues of chip/device transferring are becoming increasingly serious with the decreasing of chip/device thickness and size. The application of ultra-thin (<50 μm) silicon-based chips is challenging the current electronic packaging processes. Special attentions are being paid to the structure delamination, chip warping, and chip cracking with respect to the ultra-thin chip transferring. This chapter summarizes the current developments relating to the transferring process, including thin/ultra-thin chip peeling-off, picking-up, and placing-on. Approaches to address the deformation and failure behavior of the adhesively bonded multilayer structure commonly used in the analysis of the above procedures are discussed. Typical and innovative processes of needle ejecting, conformal peeling, laser-induced peeling, vacuum-based picking-up and placing-on are all included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yin Z, Huang Y, Bu N, Wang X, Xiong Y (2010) Inkjet printing for flexible electronics: materials, processes and equipments. Chin Sci Bull 55(30):3383–3407

    Article  Google Scholar 

  2. Wong WS, Salleo A (2009) Flexible electronics: materials and applications, vol 11. Springer, US

    Google Scholar 

  3. Meitl MA, Zhu Z-T, Kumar V, Lee KJ, Feng X, Huang YY, Adesida I, Nuzzo RG, Rogers JA (2006) Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat Mater 5(1):33–38

    Article  Google Scholar 

  4. Feng X, Meitl MA, Bowen AM, Huang Y, Nuzzo RG, Rogers JA (2007) Competing fracture in kinetically controlled transfer printing. Langmuir 23(25):12555–12560

    Article  Google Scholar 

  5. Yu J, Bulović V (2007) Micropatterning metal electrode of organic light emitting devices using rapid polydimethylsiloxane lift-off. Appl Phys Lett 91(4):043102

    Article  Google Scholar 

  6. Fan Z, Ho JC, Takahashi T, Yerushalmi R, Takei K, Ford AC, Chueh YL, Javey A (2009) Toward the development of printable nanowire electronics and sensors. Adv Mater 21(37):3730–3743

    Article  Google Scholar 

  7. Kim T-H, Carlson A, Ahn J-H, Won SM, Wang S, Huang Y, Rogers JA (2009) Kinetically controlled, adhesiveless transfer printing using microstructured stamps. Appl Phys Lett 94(11):113502

    Article  Google Scholar 

  8. Park S-I, Xiong Y, Kim R-H, Elvikis P, Meitl M, Kim D-H, Wu J, Yoon J, Yu C-J, Liu Z (2009) Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 325(5943):977–981

    Google Scholar 

  9. Caldwell JD, Anderson TJ, Culbertson JC, Jernigan GG, Hobart KD, Kub FJ, Tadjer MJ, Tedesco JL, Hite JK, Mastro MA (2010) Technique for the dry transfer of epitaxial graphene onto arbitrary substrates. ACS Nano 4(2):1108–1114

    Article  Google Scholar 

  10. Kim S, Wu J, Carlson A, Jin SH, Kovalsky A, Glass P, Liu Z, Ahmed N, Elgan SL, Chen W (2010) Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. Proc Natl Acad Sci 107(40):17095–17100

    Article  Google Scholar 

  11. Ko H, Takei K, Kapadia R, Chuang S, Fang H, Leu PW, Ganapathi K, Plis E, Kim HS, Chen S-Y (2010) Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors. Nature 468(7321):286–289

    Article  Google Scholar 

  12. Liu H, Takagi D, Chiashi S, Homma Y (2010) Transfer and alignment of random single-walled carbon nanotube films by contact printing. ACS Nano 4(2):933–938

    Article  Google Scholar 

  13. Packard CE, Murarka A, Lam EW, Schmidt MA, Bulović V (2010) Contact-printed microelectromechanical systems. Adv Mater 22(16):1840–1844

    Article  Google Scholar 

  14. Wu CC, Liu CH, Zhong Z (2010) One-step direct transfer of pristine single-walled carbon nanotubes for functional nanoelectronics. Nano Lett 10(3):1032–1036

    Article  Google Scholar 

  15. Carlson A, Kim-Lee H-J, Wu J, Elvikis P, Cheng H, Kovalsky A, Elgan S, Yu Q, Ferreira PM, Huang Y (2011) Shear-enhanced adhesiveless transfer printing for use in deterministic materials assembly. Appl Phys Lett 98(26):264104

    Article  Google Scholar 

  16. Qi Y, Kim J, Nguyen TD, Lisko B, Purohit PK, McAlpine MC (2011) Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett 11(3):1331–1336

    Article  Google Scholar 

  17. Wu J, Kim S, Chen W, Carlson A, Hwang K-C, Huang Y, Rogers JA (2011) Mechanics of reversible adhesion. Soft Matter 7(18):8657–8662

    Article  Google Scholar 

  18. Crawford GP (2005) Flexible flat panel display technology. Wiley Online Library

    Google Scholar 

  19. Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428(6986):911–918

    Article  Google Scholar 

  20. Gelinck GH, Huitema HEA, van Veenendaal E, Cantatore E, Schrijnemakers L, van der Putten JB, Geuns TC, Beenhakkers M, Giesbers JB, Huisman B-H (2004) Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mater 3(2):106–110

    Article  Google Scholar 

  21. Kim D-H, Ahn J-H, Choi WM, Kim H-S, Kim T-H, Song J, Huang YY, Liu Z, Lu C, Rogers JA (2008) Stretchable and foldable silicon integrated circuits. Science 320(5875):507–511

    Article  Google Scholar 

  22. Sekitani T, Zschieschang U, Klauk H, Someya T (2010) Flexible organic transistors and circuits with extreme bending stability. Nat Mater 9(12):1015–1022

    Article  Google Scholar 

  23. Yoon J, Baca AJ, Park S-I, Elvikis P, Geddes JB, Li L, Kim RH, Xiao J, Wang S, Kim T-H (2008) Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat Mater 7(11):907–915

    Article  Google Scholar 

  24. Greig W (2007) Integrated circuit packaging, assembly and interconnections. Springer, US

    Google Scholar 

  25. Tong H-M, Lai Y-S, Wong C (2013) Advanced flip chip packaging. Springer, US

    Book  Google Scholar 

  26. Liu Z, Tang P, Huang Y, Yin Z (2014) Experimental estimation of adhesive fracture energy of compliant adhesive tape. In: 15th international conference on electronic packaging technology, 12–15 Aug 2014, pp 842–846

    Google Scholar 

  27. Kim DH, Kim YS, Wu J, Liu Z, Song J, Kim HS, Huang YY, Hwang KC, Rogers JA (2009) Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper. Adv Mater 21(36):3703–3707

    Article  Google Scholar 

  28. Burghartz JN, Appel W, Harendt C, Rempp H, Richter H, Zimmermann M (2010) Ultra-thin chip technology and applications, a new paradigm in silicon technology. Solid-State Electron 54(9):818–829

    Article  Google Scholar 

  29. Burghartz JN, Harendt C, Hoang T, Kiss A, Zimmermann M (2009) Ultra-thin chip fabrication for next-generation silicon processes. In: IEEE Bipolar/BiCMOS circuits and technology meeting, 12–14 Oct 2009, pp 131–137

    Google Scholar 

  30. Harendt C, Kostelnik J, Kugler A, Lorenz E, Saller S, Schreivogel A, Yu ZL, Burghartz JN (2015) Hybrid Systems in Foil (HySiF) exploiting ultra-thin flexible chips. Solid-State Electron 113:101–108

    Article  Google Scholar 

  31. Shahrjerdi D, Bedell SW (2013) Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic. Nano Lett 13(1):315–320

    Article  Google Scholar 

  32. Kuo T-Y, Shih Y-C, Lee Y-C, Chang H-H, Hsiao Z-C, Chiang C-W, Li S-M, Hwang Y-J, Ko C-T, Chen Y-H (2009) Flexible and ultra-thin embedded chip package. In: 59th electronic components and technology conference, 26–29 May 2009, pp 1749–1753

    Google Scholar 

  33. Brand Jvd, Kok Md, Sridhar A, Cauwe M, Verplancke R, Bossuyt F, De Baets J, Vanfleteren J (2014) Flexible and stretchable electronics for wearable healthcare. In: 44th European solid state device research conference (ESSDERC), 22–26 Sept 2014, pp 206–209

    Google Scholar 

  34. Su Y, Wu J, Fan Z, Hwang K-C, Song J, Huang Y, Rogers JA (2012) Postbuckling analysis and its application to stretchable electronics. J Mech Phys Solids 60(3):487–508

    Article  MathSciNet  MATH  Google Scholar 

  35. Rogers JA, Someya T, Huang Y (2010) Materials and mechanics for stretchable electronics. Science 327(5973):1603–1607

    Article  Google Scholar 

  36. Chiang C-J, Winscom C, Bull S, Monkman A (2009) Mechanical modeling of flexible OLED devices. Org Electron 10(7):1268–1274

    Article  Google Scholar 

  37. Burghartz JN (2010) Ultra-thin chip technology and applications. Springer-Verlag, New York

    Google Scholar 

  38. Porter D, Berfield T (2013) Die separation and rupture strength for deep reactive ion etched silicon wafers. J Micromech Microeng 23(8):085020

    Article  Google Scholar 

  39. Jeon E-B, Park J-D, Song JH, Lee HJ, Kim H-S (2012) Bi-axial fracture strength characteristic of an ultra-thin flash memory chip. J Micromech Microeng 22(10):105014

    Article  Google Scholar 

  40. Schoenfelder S, Ebert M, Landesberger C, Bock K, Bagdahn J (2007) Investigations of the influence of dicing techniques on the strength properties of thin silicon. Microelectron Reliab 47(2):168–178

    Article  Google Scholar 

  41. Feil M, Adler C, Hemmetzberger D, Konig M, Bock K (2004) The challenge of ultra thin chip assembly. In: 54th electronic components and technology conference (IEEE Cat. No. 04CH37546), 1–4 June 2004, vol 31, pp 35–40

    Google Scholar 

  42. Medding J, Stalder R, Niederhauser M, Stoessel P (2004) Thin die bonding techniques. In: IEEE/CPMT/SEMI 29th international electronics manufacturing technology symposium (IEEE Cat. No. 04CH37585), 14–16 July 2004, pp 68–73

    Google Scholar 

  43. Gambino JP (2013) Thin silicon wafer processing and strength characterization. In: Proceedings of the 20th IEEE international symposium on the physical and failure analysis of integrated circuits (IPFA), 15–19 July 2013, pp 199–207

    Google Scholar 

  44. Wilson L (2013) International technology roadmap for semiconductors (ITRS). Semiconductor Industry Association

    Google Scholar 

  45. Bock K (2005) Polymer electronics systems-polytronics. Proc IEEE 93(8):1400–1406

    Article  Google Scholar 

  46. Allen KJ (2005) Reel to real: Prospects for flexible displays. Proc IEEE 93(8):1394–1399

    Article  Google Scholar 

  47. Deng J, Lee MM, Moy SS (2004) Stress analysis of steel beams reinforced with a bonded CFRP plate. Compos Struct 65(2):205–215

    Article  Google Scholar 

  48. Campilho RD, De Moura M, Domingues J (2008) Using a cohesive damage model to predict the tensile behaviour of CFRP single-strap repairs. Int J Solids Struct 45(5):1497–1512

    Article  MATH  Google Scholar 

  49. Cheng J, Taheri F (2006) A smart single-lap adhesive joint integrated with partially distributed piezoelectric patches. Int J Solids Struct 43(5):1079–1092

    Article  MATH  Google Scholar 

  50. Cheng H, Wu J, Li M, Kim D-H, Kim Y-S, Huang Y, Kang Z, Hwang K, Rogers J (2011) An analytical model of strain isolation for stretchable and flexible electronics. Appl Phys Lett 98(6):061902

    Article  Google Scholar 

  51. Sun J-Y, Lu N, Yoon J, Oh K-H, Suo Z, Vlassak JJ (2012) Debonding and fracture of ceramic islands on polymer substrates. J Appl Phys 111(1):013517

    Article  Google Scholar 

  52. Jiang Z, Huang Y, Chandra A (1997) Thermal stresses in layered electronic assemblies. J Electron Packag 119(2):127–132

    Article  Google Scholar 

  53. Wang K, Huang Y, Chandra A, Hu KX (2000) Interfacial shear stress, peeling stress, and die cracking stress in trilayer electronic assemblies. In: ITHERM 2000. The seventh intersociety conference on thermal and thermomechanical phenomena in electronic systems (Cat. No. 00CH37069), vol 52, pp 56–64

    Google Scholar 

  54. Delale F, Erdogan F, Aydinoglu M (1981) Stresses in adhesively bonded joints: a closed-form solution. J Compos Mater 15(3):249–271

    Article  Google Scholar 

  55. Zou G, Shahin K, Taheri F (2004) An analytical solution for the analysis of symmetric composite adhesively bonded joints. Compos Struct 65(3):499–510

    Article  Google Scholar 

  56. Shahin K, Taheri F (2007) Analysis of deformations and stresses in balanced and unbalanced adhesively bonded single-strap joints. Compos Struct 81(4):511–524

    Article  Google Scholar 

  57. Shahin K, Kember G, Taheri F (2008) An asymptotic solution for evaluation of stresses in balanced and unbalanced adhesively bonded joints. Mech Adv Mater Struct 15(2):88–103

    Article  Google Scholar 

  58. Li G (2010) Elastic analysis of closed-form solutions for adhesive stresses in bonded single-strap butt joints. J Mech Mater Struct 5(3):409–426

    Article  Google Scholar 

  59. Goland M, Reissner E (1944) The stresses in cemented joints. J Appl Mech 11(1):A17–A27

    Google Scholar 

  60. Hart-Smith LJ (1973) Adhesive-bonded single-lap joints. National Aeronautics and Space Administration (NASA)

    Google Scholar 

  61. Cheng S, Chen D, Shi Y (1991) Analysis of adhesive-bonded joints with nonidentical adherends. J Eng Mech 117(3):605–623

    Article  Google Scholar 

  62. Oplinger D (1994) Effects of adherend deflections in single lap joints. Int J Solids Struct 31(18):2565–2587

    Article  MATH  Google Scholar 

  63. Wu Z, Romeijn A, Wardenier J (1997) Stress expressions of single-lap adhesive joints of dissimilar adherends. Compos Struct 38(1):273–280

    Article  Google Scholar 

  64. Tsai M, Oplinger D, Morton J (1998) Improved theoretical solutions for adhesive lap joints. Int J Solids Struct 35(12):1163–1185

    Article  MATH  Google Scholar 

  65. Her S-C (1999) Stress analysis of adhesively-bonded lap joints. Compos Struct 47(1):673–678

    Article  Google Scholar 

  66. Weißgraeber P, Becker W (2013) Finite fracture mechanics model for mixed mode fracture in adhesive joints. Int J Solids Struct 50(14):2383–2394

    Article  Google Scholar 

  67. Adams RD, Peppiatt NA (1974) Stress analysis of adhesive-bonded lap joints. J Strain Anal 9(3):185–196

    Article  Google Scholar 

  68. Luo Q, Tong L (2004) Linear and higher order displacement theories for adhesively bonded lap joints. Int J Solids Struct 41(22):6351–6381

    Article  MATH  Google Scholar 

  69. Luo Q, Tong L (2009) Energy release rates for interlaminar delamination in laminates considering transverse shear effects. Compos Struct 89(2):235–244

    Article  MathSciNet  Google Scholar 

  70. Bennati S, Colleluori M, Corigliano D, Valvo PS (2009) An enhanced beam-theory model of the asymmetric double cantilever beam (ADCB) test for composite laminates. Compos Sci Technol 69(11):1735–1745

    Article  Google Scholar 

  71. Shahin K, Taheri F (2008) The strain energy release rates in adhesively bonded balanced and unbalanced specimens and lap joints. Int J Solids Struct 45(25):6284–6300

    Article  MATH  Google Scholar 

  72. Yang C, Pang S-S (1996) Stress-strain analysis of single-lap composite joints under tension. J Eng Mater Technol 118(2):247–255

    Article  Google Scholar 

  73. Wang J, Qiao P (2004) On the energy release rate and mode mix of delaminated shear deformable composite plates. Int J Solids Struct 41(9):2757–2779

    Article  MATH  Google Scholar 

  74. Chadegani A, Batra RC (2011) Analysis of adhesive-bonded single-lap joint with an interfacial crack and a void. Int J Adhes Adhes 31(6):455–465

    Article  Google Scholar 

  75. Chadegani A, Yang C, Smeltzer SS (2012) Adhesive-bonded composite joints analysis with delaminated surface ply using strain-energy release rate. J Aircr 49(2):503–520

    Article  Google Scholar 

  76. da Silva LF, das Neves PJ, Adams R, Spelt J (2009) Analytical models of adhesively bonded joints—Part I: Literature survey. Int J Adhes Adhes 29(3):319–330

    Google Scholar 

  77. Hutchinson JW, Suo Z (1991) Mixed mode cracking in layered materials. In: Hutchinson JW, Wu TY (eds) Advances in applied mechanics, vol 29. Elsevier, pp 63–191

    Google Scholar 

  78. He M, Evans A, Hutchinson J (1997) Convergent debonding of films and fibers. Acta Mater 45(8):3481–3489

    Article  Google Scholar 

  79. Li S, Wang J, Thouless M (2004) The effects of shear on delamination in layered materials. J Mech Phys Solids 52(1):193–214

    Article  MATH  Google Scholar 

  80. Qiao P, Wang J (2004) Mechanics and fracture of crack tip deformable bi-material interface. Int J Solids Struct 41(26):7423–7444

    Article  MATH  Google Scholar 

  81. Wang J, Zhang C (2009) Energy release rate and phase angle of delamination in sandwich beams and symmetric adhesively bonded joints. Int J Solids Struct 46(25):4409–4418

    Article  MATH  Google Scholar 

  82. Lu N, Yoon J, Suo Z (2007) Delamination of stiff islands patterned on stretchable substrates. Int J Mater Res 98(8):717–722

    Article  Google Scholar 

  83. Yang C, Chadegani A, Tomblin JS (2008) Strain energy release rate determination of prescribed cracks in adhesively-bonded single-lap composite joints with thick bondlines. Compos B Eng 39(5):863–873

    Article  Google Scholar 

  84. Allix O, Ladevèze P (1992) Interlaminar interface modelling for the prediction of delamination. Compos Struct 22(4):235–242

    Article  Google Scholar 

  85. Corigliano A (1993) Formulation, identification and use of interface models in the numerical analysis of composite delamination. Int J Solids Struct 30(20):2779–2811

    Article  MATH  Google Scholar 

  86. Bennati S, Fisicaro P, Valvo PS (2013) An enhanced beam-theory model of the mixed-mode bending (MMB) test—Part I: Literature review and mechanical model. Meccanica 48(2):443–462

    Article  MathSciNet  MATH  Google Scholar 

  87. Bennati S, Fisicaro P, Valvo PS (2013) An enhanced beam-theory model of the mixed-mode bending (MMB) test—Part II: Applications and results. Meccanica 48(2):465–484

    Article  MathSciNet  MATH  Google Scholar 

  88. Bennati S, Taglialegne L, Valvo PS (2010) Modelling of interfacial fracture of layered structures. In: Proceedings of the 18th European conference on fracture: fracture of materials and structures from micro to macro scale, ECF, Dresden, Germany, 30 Aug 3 Sept 2010

    Google Scholar 

  89. Peng B, Huang Y, Yin Z, Xiong Y (2011) Analysis of interfacial peeling in IC chip pick-up process. J Appl Phys 110(7):073508

    Article  Google Scholar 

  90. Peng B, Huang Y, Yin Z, Xiong Y (2012) Competing fracture modeling of thin chip pick-up process. IEEE Trans Compon Packag Manuf Technol 2(7):1217–1225

    Article  Google Scholar 

  91. Liu Z, Valvo PS, Huang Y, Yin Z (2013) Cohesive failure analysis of an array of IC chips bonded to a stretched substrate. Int J Solids Struct 50(22–23):3528–3538

    Google Scholar 

  92. Liu Z, Huang Y, Chen J, Yin Z (2014) Tunable peeling technique and mechanism of thin chip from compliant adhesive tapes. IEEE Trans Compon Packag Manuf Technol 4(4):560–568

    Article  Google Scholar 

  93. Liu Z, Huang YA, Liu H, Chen J, Yin Z (2014) Reliable peeling of ultrathin die with multineedle ejector. IEEE Trans Compon Packag Manuf Technol 4(9):1545–1554

    Article  Google Scholar 

  94. Liu Z, Huang Y, Yin Z, Bennati S, Valvo PS (2014) A general solution for the two-dimensional stress analysis of balanced and unbalanced adhesively bonded joints. Int J Adhes Adhes 54:112–123

    Article  Google Scholar 

  95. Liu Z, Wan X, Huang Y, Chen J, Yin Z (2018) Theoretical and experimental studies of competing fracture for flexible chip-adhesive-substrate composite structure. IEEE Trans Compon Packag Manuf Technol 8(1):57–64

    Article  Google Scholar 

  96. Camanho PP, Dávila CG (2002) Mixed-mode decohesion finite elements for the simulation of delamination in composite materials. National Aeronautics and Space Administration (NASA)

    Google Scholar 

  97. Agrawal A, Karlsson AM (2006) Obtaining mode mixity for a bimaterial interface crack using the virtual crack closure technique. Int J Fract 141(1):75–98

    Article  MATH  Google Scholar 

  98. Berggreen C, Simonsen BC, Borum KK (2007) Experimental and numerical study of interface crack propagation in foam-cored sandwich beams. J Compos Mater 41(4):493–520

    Article  Google Scholar 

  99. Auersperg J, Kieselstein E, Schubert A, Michel B (2002) Delamination risk evaluation for plastic packages based on mixed mode fracture mechanics approaches. J Electron Packag 124(4):318–322

    Article  Google Scholar 

  100. Xie D, Biggers SB (2006) Progressive crack growth analysis using interface element based on the virtual crack closure technique. Finite Elem Anal Des 42(11):977–984

    Article  Google Scholar 

  101. Xie D, Biggers SB (2007) Calculation of transient strain energy release rates under impact loading based on the virtual crack closure technique. Int J Impact Eng 34(6):1047–1060

    Article  Google Scholar 

  102. Valvo PS (2012) A revised virtual crack closure technique for physically consistent fracture mode partitioning. Int J Fract 173(1):1–20

    Article  MATH  Google Scholar 

  103. Cheng T-H, Du C-C, Tseng C-H (2006) Study in IC chip failure during pick-up process by using experimental and finite element methods. J Mater Process Technol 172(3):407–416

    Article  Google Scholar 

  104. Cheng T-H, Tseng C-H, Hung C-H (2008) Application of a genetic algorithm associated with adhesive joint analysis to the IC chip pick-up process. J Adhes Sci Technol 22(10–11):1057–1072

    Article  Google Scholar 

  105. Lin Y-J, Hwang S-J (2005) Static analysis of the die picking process. IEEE Trans Electron Packag Manuf 28(2):142–149

    Article  Google Scholar 

  106. Cheng T-H, Tseng C-H, Hung C-H (2006) Analysis of stresses in adhesive joints applicable to IC chips using symbolic manipulation and the numerical method. J Adhes Sci Technol 20(15):1669–1692

    Article  Google Scholar 

  107. Liu Y, Irving S, Desbiens D, Timwah L, Qiuxiao Q (2006) Simulation and analysis for typical package assembly manufacture. In: EuroSime 2006—7th international conference on thermal, mechanical and multiphysics simulation and experiments in micro-electronics and micro-systems, 24–26 April 2006, pp 1–10

    Google Scholar 

  108. Saiki N, Inaba K, Kishimoto K, Seno H, Ebe K (2010) Study on peeling behavior in pick-up process of IC chip with adhesive tapes. J Solid Mech Mater Eng 4(7):1051–1060

    Article  Google Scholar 

  109. Saiki N, Inaba K, Kishimoto K, Seno H, Ichikawa I (2010) Modeling and validation of evaluation method on IC chip pick-up performance of dicing/die bonding tape. In: 3rd electronics system integration technology conference ESTC, 13–16 Sept 2010, pp 1–6

    Google Scholar 

  110. Ko HC, Stoykovich MP, Song J, Malyarchuk V, Choi WM, Yu C-J, Geddes Iii JB, Xiao J, Wang S, Huang Y (2008) A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454(7205):748–753

    Article  Google Scholar 

  111. Huang Y, Chen J, Yin Z, Xiong Y (2011) Roll-to-roll processing of flexible heterogeneous electronics with low interfacial residual stress. IEEE Trans Compon Packag Manuf Technol 1(9):1368–1377

    Article  Google Scholar 

  112. Huang Y, Yin Z, Xiong Y (2010) Thermomechanical analysis of film-on-substrate system with temperature-dependent properties. J Appl Mech-T Asme 77(4):041016

    Article  Google Scholar 

  113. Huang Y, Yin Z, Xiong Y (2010) Thermomechanical analysis of thin films on temperature-dependent elastomeric substrates in flexible heterogeneous electronics. Thin Solid Films 518(6):1698–1702

    Article  Google Scholar 

  114. Feng Y, Wu L (2001) Analysis of interfacial thermal stresses of chip-substrate structure. Int J Solids Struct 38(9):1551–1562

    Article  MATH  Google Scholar 

  115. Park SI, Ahn JH, Feng X, Wang S, Huang Y, Rogers JA (2008) Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates. Adv Func Mater 18(18):2673–2684

    Article  Google Scholar 

  116. Wang KP, Huang YY, Chandra A, Hu KX (2000) Interfacial shear stress, peeling stress, and die cracking stress in trilayer electronic assemblies. IEEE Trans Compon Packag Technol 23(2):309–316

    Article  Google Scholar 

  117. Zhang Z, Yoon J, Suo Z (2006) Method to analyze dislocation injection from sharp features in strained silicon structures. Appl Phys Lett 89(26):261912

    Article  Google Scholar 

  118. Liu X, Suo Z, Ma Q (1998) Split singularities: stress field near the edge of a silicon die on a polymer substrate. Acta Mater 47(1):67–76

    Article  Google Scholar 

  119. Feron M, Zhang Z, Suo Z, Feron M (2007) Split singularities and dislocation injection in strained silicon. J Appl Phys 102(2):023502

    Article  Google Scholar 

  120. Peng B, Huang Y, Yin Z, Xiong Y (2011) On the analysis of dynamic effect in the die pick-up process. In: 12th international conference on electronic packaging technology and high density packaging, 8–11 Aug 2011. IEEE, pp 651–654

    Google Scholar 

  121. Chong ACM, Cheung YM (2003) Finite element stress analysis of thin die detachment process. In: Fifth international conference on electronic packaging technology proceedings, 28–30 Oct 2003, pp 44–51

    Google Scholar 

  122. Cheung YM, Chong ACM, Huang B (2006) Determination of the interfacial fracture toughness of laminated silicon die on adhesive dicing tape from stud pull measurement. In: International conference on electronic materials and packaging, 11–14 Dec 2006, pp 1–10

    Google Scholar 

  123. Xu Z, Liu Z, Huang Y, Chen J, Liu H, Yin Z (2015) Vacuum-based picking-up of thin chip from adhesive tape. J Adhes Sci Technol 29(13):1315–1329

    Article  Google Scholar 

  124. Hassinen T, Ruotsalainen T, Laakso P, Penttilä R, Sandberg HGO (2014) Roll-to-roll compatible organic thin film transistor manufacturing technique by printing, lamination, and laser ablation. Thin Solid Films 571:212–217

    Article  Google Scholar 

  125. Roth B, Søndergaard RR, Krebs FC (2015) Roll-to-roll printing and coating techniques for manufacturing large-area flexible organic electronics. In: Logothetidis S (ed) Handbook of flexible organic electronics. Woodhead Publishing, Oxford, pp 171–197

    Google Scholar 

  126. Dupont SR, Oliver M, Krebs FC, Dauskardt RH (2012) Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells. Sol Energy Mater Sol Cells 97:171–175

    Article  Google Scholar 

  127. Chen J, Liu H, Huang Y, Yin Z (2016) High-rate roll-to-roll stack and lamination of multilayer structured membrane electrode assembly. J Manuf Process 23:175–182

    Article  Google Scholar 

  128. Huang Y, Liu H, Xu Z, Chen J, Yin Z (2018) Conformal peeling of device-on-substrate system in flexible electronic assembly. IEEE Trans Compon Packag Manuf Technol 8(8):1496–1506

    Article  Google Scholar 

  129. Yurenka S (1962) Peel testing of adhesive bonded metal. J Appl Polym Sci 6(20):136–144

    Article  Google Scholar 

  130. Wang Y (2014) The effect of peeling rate and peeling angle on the peeling strength. The University of Akron

    Google Scholar 

  131. Wacker N, Richter H, Hoang T, Gazdzicki P, Schulze M, Angelopoulos EA, Hassan M-U, Burghartz JN (2014) Stress analysis of ultra-thin silicon chip-on-foil electronic assembly under bending. Semicond Sci Technol 29:095007 (095012pp)

    Google Scholar 

  132. Cortet PP, Ciccotti M, Vanel L (2007) Imaging the stick–slip peeling of an adhesive tape under a constant load. J Stat Mech Theory Exp 2007(03):P03005

    Google Scholar 

  133. Eremeyev VA, Naumenko K (2015) A relationship between effective work of adhesion and peel force forthin hyperelastic films undergoing large deformation. Mech Res Commun 69:24–26

    Article  Google Scholar 

  134. Gent AN, Kaang SY (1987) Effect of peel angle upon peel force. J Adhes 24(2–4):173–181

    Article  Google Scholar 

  135. Jiang D, Feng X, Qu B, Wang Y, Fang D (2012) Rate-dependent interaction between thin films and interfaces during micro/nanoscale transfer printing. Soft Matter 8:418–423

    Article  Google Scholar 

  136. Kaelble DH (1992) Theory and analysis of peel adhesion: adhesive thickness effects. J Adhes 37(1–3):205–214

    Article  Google Scholar 

  137. Park Ju, Hardy M, Kang SJ, Barton K, Adair K, Mukhopadhyay DK, Lee CY, Strano MS, Alleyne AG, Georgiadis JG, Ferreira PM, Rogers JA (2007) High-resolution electrohydrodynamic jet printing. Nat Mater 6:782–789

    Article  Google Scholar 

  138. Kovalchick C, Molinari A, Ravichandran G (2013) Rate dependent adhesion energy and nonsteady peeling of inextensible tapes. J Appl Mech 81(4):041016

    Google Scholar 

  139. Cheng H, Li M, Wu J, Carlson A, Kim S, Huang Y, Kang Z, Hwang K-C, Rogers JA (2013) A viscoelastic model for the rate effect in transfer printing. J Appl Mech 80(4):041015–041019

    Google Scholar 

  140. Peng Z, Wang C, Chen L, Chen S (2014) Peeling behavior of a viscoelastic thin-film on a rigid substrate. Int J Solids Struct 51:4596–4603

    Article  Google Scholar 

  141. Xiong Z, Tay AA (2000) Modeling of viscoelastic effects on interfacial delamination in IC packages. Paper presented at the electronic components and technology conference, 21–24 May

    Google Scholar 

  142. Joe DJ, Kim S, Park JH, Park DY, Lee HE, Im TH, Choi I, Ruoff RS, Lee KJ (2017) Laser–material interactions for flexible applications. Adv Mater 29(26):1606586

    Article  Google Scholar 

  143. Kim S, Son JH, Lee SH, You BK, Park KI, Lee HK, Byun M, Lee KJ (2014) Flexible crossbar-structured resistive memory arrays on plastic substrates via inorganic-based laser lift-off. Adv Mater 26(44):7480–7487

    Article  Google Scholar 

  144. Park KI, Son JH, Hwang GT, Jeong CK, Ryu J, Koo M, Choi I, Lee SH, Byun M, Wang ZL (2014) Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv Mater 26(16):2514–2520

    Article  Google Scholar 

  145. Lee CH, Kim SJ, Oh Y, Kim MY, Yoon Y-J, Lee H-S (2010) Use of laser lift-off for flexible device applications. J Appl Phys 108(10):102814

    Article  Google Scholar 

  146. Kim SJ, Lee HE, Choi H, Kim Y, We JH, Shin JS, Lee KJ, Cho BJ (2016) High-performance flexible thermoelectric power generator using laser multiscanning lift-off process. ACS Nano 10(12):10851–10857

    Article  Google Scholar 

  147. Do YH, Kang MG, Kim JS, Kang CY, Yoon SJ (2012) Fabrication of flexible device based on PAN-PZT thin films by laser lift-off process. Sens Actuators A 184:124–127

    Article  Google Scholar 

  148. Bian J, Zhou L, Wan X, Liu M, Zhu C, Huang Y, Yin Z (2019) Experimental study of laser lift-off of ultra-thin polyimide film for flexible electronics. Sci China Technol Sci 62(2):233–242

    Google Scholar 

  149. Delmdahl R, Pätzel R, Brune J (2013) Large-area laser-lift-off processing in microelectronics. Phys Proced 41:241–248

    Article  Google Scholar 

  150. Doany FE, Narayan C (1997) Laser release process to obtain freestanding multilayer metal-polyimide circuits. IBM J Res Dev 41(1/2):151–157

    Article  Google Scholar 

  151. Delmdahl R, Fricke M, Fechner B (2014) Laser lift-off systems for flexible-display production. J Inform Disp 15(1):1–4

    Article  Google Scholar 

  152. MacCarthy N, Wood T, Ameri H, O’Connell D, Alderman J (2006) A laser release method for producing prototype flexible retinal implant devices. Sens Actuators A 132(1):296–301

    Article  Google Scholar 

  153. Wong WS, Sands T, Cheung NW, Kneissl M, Bour DP, Mei P, Romano LT, Johnson NM (1999) Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off. Appl Phys Lett 75(10):1360–1362

    Article  Google Scholar 

  154. Chu C-F, Lai F-I, Chu J-T, Yu C-C, Lin C-F, Kuo H-C, Wang SC (2004) Study of GaN light-emitting diodes fabricated by laser lift-off technique. J Appl Phys 95(8):3916–3922

    Article  Google Scholar 

  155. Lin WY, Wuu DS, Pan KF, Huang SH, Lee CE, Wang WK, Hsu SC, Su YY, Huang SY, Horng RH (2005) High-power GaN-mirror-Cu light-emitting diodes for vertical current injection using laser liftoff and electroplating techniques. IEEE Photonics Technol Lett 17(9):1809–1811

    Article  Google Scholar 

  156. Seo J-H, Li J, Lee J, Gong S, Lin J, Jiang H, Ma Z (2015) A simplified method of making flexible blue LEDs on a plastic substrate. IEEE Photonics J 7(2):1–7

    Article  Google Scholar 

  157. Jung Y, Wang X, Kim J, Hyun Kim S, Ren F, Pearton SJ, Kim J (2012) GaN-based light-emitting diodes on origami substrates. Appl Phys Lett 100(23):231113

    Article  Google Scholar 

  158. Jung Y, Wang X, Kim SH, Ren F, Kim J, Pearton SJ (2012) A facile method for flexible GaN-based light-emitting diodes. Phys Status Solidi (RRL)-Rapid Res Lett 6(11):421–423

    Google Scholar 

  159. Kim Ti, Jung YH, Song J, Kim D, Li Y, Kim Hs, Song IS, Wierer JJ, Pao HA, Huang Y (2012) High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates. Small 8(11):1643–1649

    Google Scholar 

  160. Kim RH, Tao H, Kim Ti, Zhang Y, Kim S, Panilaitis B, Yang M, Kim DH, Jung YH, Kim BH, Li Y, Huang Y, Omenetto FG, Rogers JA (2012) Materials and designs for wirelessly powered implantable light-emitting systems. Small 8(18):2812–2818

    Google Scholar 

  161. Cheung YF, Li KH, Choi HW (2016) Flexible free-standing III-nitride thin films for emitters and displays. ACS Appl Mater Interfaces 8(33):21440–21445

    Article  Google Scholar 

  162. Lee SH, Park SY, Lee KJ (2012) Laser lift-off of GaN thin film and its application to the flexible light emitting diodes. In: Biosensing and nanomedicine V. 2012 International society for optics and photonics, p 846011

    Google Scholar 

  163. Chun J, Hwang Y, Choi YS, Jeong T, Baek JH, Ko HC, Park SJ (2012) Transfer of GaN LEDs from sapphire to flexible substrates by laser lift-off and contact printing. IEEE Photonics Technol Lett 24(23):2115–2118

    Article  Google Scholar 

  164. Chun J, Hwang Y, Choi Y-S, Kim J-J, Jeong T, Baek JH, Ko HC, Park S-J (2014) Laser lift-off transfer printing of patterned GaN light-emitting diodes from sapphire to flexible substrates using a Cr/Au laser blocking layer. Scripta Mater 77:13–16

    Article  Google Scholar 

  165. Choi WS, Park HJ, Park SH, Jeong T (2014) Flexible InGaN LEDs on a polyimide substrate fabricated using a simple direct-transfer method. IEEE Photonics Technol Lett 26(21):2115–2117

    Article  Google Scholar 

  166. Tsakalakos L, Sands T (2000) Epitaxial ferroelectric (Pb,La)(Zr,Ti)O3 thin films on stainless steel by excimer laser liftoff. Appl Phys Lett 76(2):227–229

    Article  Google Scholar 

  167. Tsakalakos L, Sands T, Carleton E, Yu KM (2003) Modification of (Pb,La)(Zr,Ti)O3 thin films during pulsed laser liftoff from MgO substrates. J Appl Phys 94(6):4047–4052

    Article  Google Scholar 

  168. Li K-Y, Tai N-H, Lin IN (2005) Preparation of PNN-PZT thick film on Pt/Ti/SiO2/Si substrate by laser lift-off process. Integr Ferroelectr 69(1):135–141

    Article  Google Scholar 

  169. Do YH, Jung WS, Kang MG, Kang CY, Yoon SJ (2013) Preparation on transparent flexible piezoelectric energy harvester based on PZT films by laser lift-off process. Sens Actuators A 200:51–55

    Article  Google Scholar 

  170. Tsakalakos L (2000) Laser liftoff of epitaxial oxide films. The University of California

    Google Scholar 

  171. Noh M-S, Kim S, Hwang D-K, Kang C-Y (2017) Self-powered flexible touch sensors based on PZT thin films using laser lift-off. Sens Actuators A 261:288–294

    Article  Google Scholar 

  172. Choi Y-Y, Choi K-H, Kim H-K (2011) Characteristics of a transparent GaON sacrificial layer for transfer of devices from sapphire to a flexible substrate. J Electrochem Soc 158(11):J349–J353

    Article  Google Scholar 

  173. Kim K, Kim SY, Lee J-L (2014) Flexible organic light-emitting diodes using a laser lift-off method. J Mater Chem C 2(12):2144–2149

    Article  Google Scholar 

  174. Jeong CK, Cho SB, Han JH, Park DY, Yang S, Park K-I, Ryu J, Sohn H, Chung Y-C, Lee KJ (2017) Flexible highly-effective energy harvester via crystallographic and computational control of nanointerfacial morphotropic piezoelectric thin film. Nano Res 10(2):437–455

    Article  Google Scholar 

  175. Jeong CK, Han JH, Palneedi H, Park H, Hwang G-T, Joung B, Kim S-G, Shin HJ, Kang I-S, Ryu J, Lee KJ (2017) Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film. APL Mater 5(7):074102

    Article  Google Scholar 

  176. Geon-Tae H, Venkateswarlu A, Hyun HJ, J. JD, Changyeon B, Yong PD, Hyun KD, Hwan PJ, Kyu JC, Kwi‐Il P, Jong‐Jin C, Kyung KD, Jungho R, Jae LK (2016) Self-powered wireless sensor node enabled by an aerosol-deposited PZT flexible energy harvester. Adv Energy Mater 6(13):1600237

    Google Scholar 

  177. Jeong CK, Park K-I, Son JH, Hwang G-T, Lee SH, Park DY, Lee HE, Lee HK, Byun M, Lee KJ (2014) Self-powered fully-flexible light-emitting system enabled by flexible energy harvester. Energy Environ Sci 7(12):4035–4043

    Article  Google Scholar 

  178. Lee HS, Chung J, Hwang GT, Jeong CK, Jung Y, Kwak JH, Kang H, Byun M, Kim WD, Hur S, Oh SH, Lee KJ (2014) Flexible inorganic piezoelectric acoustic nanosensors for biomimetic artificial hair cells. Adv Func Mater 24(44):6914–6921

    Article  Google Scholar 

  179. Park DY, Joe DJ, Kim DH, Park H, Han JH, Jeong CK, Park H, Park JG, Joung B, Lee KJ (2017) Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv Mater 29(37):1702308

    Article  Google Scholar 

  180. Lee HE, Kim S, Ko J, Yeom HI, Byun CW, Lee SH, Joe DJ, Im TH, Park SHK, Lee KJ (2016) Skin-like oxide thin-film transistors for transparent displays. Adv Func Mater 26(34):6170–6178

    Article  Google Scholar 

  181. Delmdahl R (2010) The excimer laser: precision engineering. Nat Photonics 4:286

    Article  Google Scholar 

  182. French I, George D, Kretz T, Templier F, Lifka H (2007) 58.4: Invited paper: flexible displays and electronics made in AM‐LCD facilities by the EPLaR™ process. SID Symp Dig Tech Papers 38(1):1680–1683

    Google Scholar 

  183. Lee S-W, Lee T-H, Park J-W, Park C-H, Kim H-J, Kim S-M, Lee S-H, Song J-Y, Lee J-H (2015) The effect of laser irradiation on peel strength of temporary adhesives for wafer bonding. Int J Adhes Adhes 57:9–12

    Article  Google Scholar 

  184. Dang B, Andry P, Tsang C, Maria J, Polastre R, Trzcinski R, Prabhakar A, Knickerbocker J (2010) CMOS compatible thin wafer processing using temporary mechanical wafer, adhesive and laser release of thin chips/wafers for 3D integration. In: 60th electronic components and technology conference (ECTC), 1–4 June 2010, pp 1393–1398

    Google Scholar 

  185. Webb BC, Andry P (2015) Simulation of thermal pulse evolution during laser debonding. In: IEEE 65th electronic components and technology conference (ECTC), 26–29 May 2015, pp 1423–1429

    Google Scholar 

  186. Phommahaxay A, Potoms G, Verbinnen G, Sleeckx E, Beyer G, Beyne E, Guerrero A, Bai D, Liu X, Yess K, Arnold K, Spiess W, Griesbach T, Rapps T, Lutter S (2016) Extremely low-force debonding of thinned CMOS substrate by laser release of a temporary bonding material. In: IEEE 66th electronic components and technology conference (ECTC), 31 May–3 June 2016, pp 1685–1690

    Google Scholar 

  187. Delmdahl R, Fechner B (2010) Large-area microprocessing with excimer lasers. Appl Phys A 101(2):283–286

    Article  Google Scholar 

  188. Hwang S-W, Tao H, Kim D-H, Cheng H, Song J-K, Rill E, Brenckle MA, Panilaitis B, Won SM, Kim Y-S (2012) A physically transient form of silicon electronics. Science 337(6102):1640–1644

    Article  Google Scholar 

  189. Rogers J, Lagally M, Nuzzo R (2011) Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477(7362):45–53

    Article  Google Scholar 

  190. Kim SJ, We JH, Cho BJ (2014) A wearable thermoelectric generator fabricated on a glass fabric. Energy Environ Sci 7(6):1959–1965

    Article  Google Scholar 

  191. Chen J, Xu Z, Huang Y, Duan Y, Yin Z (2016) Analytical investigation on thermal-induced warpage behavior of ultrathin chip-on-flex (UTCOF) assembly. Sci China Technol Sci 59(11):1646–1655

    Article  Google Scholar 

  192. Yousefsani SA, Tahani M (2013) Accurate determination of stress distributions in adhesively bonded homogeneous and heterogeneous double-lap joints. Eur J Mech A/Solids 39:197–208

    Article  MathSciNet  MATH  Google Scholar 

  193. Yousefsani SA, Tahani M (2013) Analytical solutions for adhesively bonded composite single-lap joints under mechanical loadings using full layerwise theory. Int J Adhes Adhes 43:32–41

    Article  Google Scholar 

  194. Reddy J (1987) A generalization of two-dimensional theories of laminated composite plates. Commun Appl Numer Methods 3(3):173–180

    Article  MATH  Google Scholar 

  195. Tahani M, Yousefsani S (2015) On thermomechanical stress analysis of adhesively bonded composite joints in presence of an interfacial void. Compos Struct 130:116–123

    Article  Google Scholar 

  196. Cheng H-C, Ma C-H, Yu C-F, Lu S-T, Chen W-H, Jang KP, kuk Son J, Kwon SH, Yang Z, Cui J (2013) Process-dependent thermal-mechanical behaviors of an advanced thin-flip-chip-on-flex interconnect technology with anisotropic conductive film joints. CMC: Comput Mater Contin 38(3):129–154

    Google Scholar 

  197. Lu S-T, Chen W-H (2010) Experimental/numerical analysis of thermally induced warpage of ultrathin chip-on-flex (UTCOF) interconnects. IEEE Trans Compon Packag Technol 33(4):819–829

    Article  Google Scholar 

  198. Cheng H-C, Chen W-H, Lin C-S, Hsu Y-Y, Uang R-H (2009) On the thermal–mechanical behaviors of a novel nanowire-based anisotropic conductive film technology. IEEE Trans Adv Packag 32(2):546–563

    Article  Google Scholar 

  199. Cheng H-C, Huang H-H, Chen W-H, Lu S-T (2015) Hygro-thermo-mechanical behavior of adhesive-based flexible chip-on-flex packaging. J Electron Mater 44(4):1220–1237

    Article  Google Scholar 

  200. Suhir E (2001) Analysis of interfacial thermal stresses in a trimaterial assembly. J Appl Phys 89(7):3685–3694

    Article  Google Scholar 

  201. Tsai M, Hsu C, Han C (2004) A note on Suhir’s solution of thermal stresses for a die-substrate assembly. J Electron Packag 126(1):115–119

    Article  Google Scholar 

  202. Tsai M-Y, Chang H-Y, Pecht M (2009) Warpage analysis of flip-chip PBGA packages subject to thermal loading. IEEE Trans Device Mater Reliab 9(3):419–424

    Article  Google Scholar 

  203. Xu Z, Liu Z, Liu H, Yin Z, Huang Y, Chen J (2015) Analytical evaluation of interfacial crack propagation in vacuum-based picking-up process. IEEE Trans Compon Packag Manuf Technol 5(11):1700–1708

    Article  Google Scholar 

  204. Yeung B, Lee T-Y (2003) An overview of experimental methodologies and their applications for die strength measurement. IEEE Trans Compon Packag Technol 26(2):423–428

    Article  Google Scholar 

  205. Barnat S, Frémont H, Gracia A, Cadalen E (2012) Evaluation by three-point-bend and ball-on-ring tests of thinning process on silicon die strength. Microelectron Reliab 52(9):2278–2282

    Article  Google Scholar 

  206. Zhang T-Y, Su Y-J, Qian C-F, Zhao M-H, Chen L-Q (2000) Microbridge testing of silicon nitride thin films deposited on silicon wafers. Acta Mater 48(11):2843–2857

    Article  Google Scholar 

  207. Wu J, Huang C, Liao C (2003) Fracture strength characterization and failure analysis of silicon dies. Microelectron Reliab 43(2):269–277

    Article  Google Scholar 

  208. Paul I, Majeed B, Razeeb K, Barton J (2006) Statistical fracture modelling of silicon with varying thickness. Acta Mater 54(15):3991–4000

    Article  Google Scholar 

  209. Majeed B, Paul I, Razeeb KM, Barton J, O’Mathuna SC (2006) Microstructural, mechanical, fractural and electrical characterization of thinned and singulated silicon test die. J Micromech Microeng 16(8):1519–1529

    Article  Google Scholar 

  210. Tsai M, Chen C (2008) Evaluation of test methods for silicon die strength. Microelectron Reliab 48(6):933–941

    Article  Google Scholar 

  211. Chae S-H, Zhao J-H, Edwards DR, Ho PS (2010) Effect of dicing technique on the fracture strength of Si dies with emphasis on multimodal failure distribution. IEEE Trans Device Mater Reliab 10(1):149–156

    Article  Google Scholar 

  212. Liu Z, Huang Y, Xiao L, Tang P, Yin Z (2015) Nonlinear characteristics in fracture strength test of ultrathin silicon die. Semicond Sci Technol 30(4):045005

    Article  Google Scholar 

  213. Thomas KR, Steiner U (2011) Direct stress measurements in thin polymer films. Soft Matter 7(17):7839–7842

    Article  Google Scholar 

  214. Ericson F, Schweitz JÅ (1990) Micromechanical fracture strength of silicon. J Appl Phys 68(11):5840–5844

    Article  Google Scholar 

  215. Lu S-T, Chen W-H (2010) Reliability and flexibility of ultra-thin chip-on-flex (UTCOF) interconnects with anisotropic conductive adhesive (ACA) joints. IEEE Trans Adv Packag 33(3):702–712

    Article  Google Scholar 

  216. Chen L (2010) An integral approach for large deflection cantilever beams. Int J Non-Linear Mech 45(3):301–305

    Article  Google Scholar 

  217. Holden J (1972) On the finite deflections of thin beams. Int J Solids Struct 8(8):1051–1055

    Article  MATH  Google Scholar 

  218. Wang T, Lee S, Zienkiewicz O (1961) A numerical analysis of large deflections of beams. Int J Mech Sci 3(3):219–228

    Article  Google Scholar 

  219. Wang C, Lam K, He X, Chucheepsakul S (1997) Large deflections of an end supported beam subjected to a point load. Int J Non-Linear Mech 32(1):63–72

    Article  MATH  Google Scholar 

  220. Iyengar KSR, Rao SL (1955) Large deflections of simply supported beams. J Franklin Inst 259(6):523–528

    Article  Google Scholar 

  221. Conway H (1947) XCIV. The large deflection of simply supported beams. Lond Edinb Dublin Philos Mag J Sci 38(287):905–911

    Google Scholar 

  222. Ohtsuki A (1986) An analysis of large deflection in a symmetrical three-point bending of beam. Bull JSME 29(253):1988–1995

    Article  Google Scholar 

  223. Mohyeddin A, Fereidoon A (2014) An analytical solution for the large deflection problem of Timoshenko beams under three-point bending. Int J Mech Sci 78:135–139

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongAn Huang .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, Y., Yin, Z., Wan, X. (2019). Advanced Electronic Packaging. In: Modeling and Application of Flexible Electronics Packaging. Springer, Singapore. https://doi.org/10.1007/978-981-13-3627-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3627-0_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3626-3

  • Online ISBN: 978-981-13-3627-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics