Skip to main content
  • 630 Accesses

Abstract

Bayesian statistics is a field of study with a long history (Bayes 1763). It has the features of straightforward interpretation and simple underlying theory, at least in principle. Analogous to the maximum likelihood estimates and confidence intervals in the frequentist framework, we have point estimates and interval estimates based on posterior distributions in the Bayesian framework. We also have similar diagnostic tools for model assessment and selections such as residual plots and information criteria. In Sect. 2.1, we review Bayesian inference including the posterior distribution, the posterior predictive distribution and the associated point estimates and interval estimates. We also summarize the usefulness of different priors and state the asymptotic normality of the posterior distribution for large samples. In Sect. 2.2, Bayesian model assessment and selections are discussed. For the model assessment, the posterior predictive p-value is an alternative to the frequentist p-value. For model selection, we turn to the several information criteria including DIC, WAIC and LOO cross-validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory, 267–281.

    Google Scholar 

  • Bayarri, M. J., Berger, J. O., Forte, A., & Garcia-Donato, G. (2012). Criteria for Bayesian model choice with application to variable selection. The Annals of Statistics, 40, 1550–1577.

    Article  MathSciNet  Google Scholar 

  • Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society, 330–418.

    Google Scholar 

  • Berger, J. O., Bernardo, J. M., & Sun, D. (2009). The formal definition of reference priors. The Annals of Statistics, 37, 905–938.

    Article  MathSciNet  Google Scholar 

  • Berry, D. A., & Stangl, D. (1996). Bayesian biostatistics. New York: Marcel Dekker.

    Book  Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2014). Bayesian data analysis (3rd ed.). Boca Raton: Chapman & Hall.

    MATH  Google Scholar 

  • Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711–732.

    Article  MathSciNet  Google Scholar 

  • Jeffreys, H. (1961). Theory of probability (3rd ed.). London: Oxford University Press.

    MATH  Google Scholar 

  • Kendall, M. G., & Stuart, A. (1961). The advanced theory of statistics: Inference and relationship. London: Charles Griffin.

    Google Scholar 

  • Laplace, P. S. (1785). Memoire sur les approximations des formules qui sont fonctions de tres grands nombres. In Memoires de l’Academie Royale des Sciences.

    Google Scholar 

  • Laplace, P. S. (1810). Memoire sur les approximations des formules qui sont fonctions de tres grands nombres, et sur leur application aux probabilites. In Memoires de l’Academie des Science de Paris.

    Google Scholar 

  • Meng, X. L. (1994). Posterior predictive \(p\)-values. The Annals of Statistics, 22, 1142–1160.

    Article  MathSciNet  Google Scholar 

  • Robins, J. M., van der Vaart, A. W., & Ventura, V. (2000). Asymptotic distribution of p-values in composite null models. Journal of the American Statistical Association, 95, 1143–1156.

    MathSciNet  MATH  Google Scholar 

  • Rubin, D. B. (1981). Estimation in parallel randomized experiments. Journal of Educational and Behavioral Statistics, 6, 377–401.

    Article  Google Scholar 

  • Rubin, D. B. (1984). Bayesianly justifiable and relevant frequency calculations for the applied statistician. The Annals of Statistics, 12, 1151–1172.

    Article  MathSciNet  Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.

    Article  MathSciNet  Google Scholar 

  • Spiegelhalter, D. J., Best, N. G., Carlin, B. R., & van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society B, 64, 583–616.

    Article  MathSciNet  Google Scholar 

  • Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research, 11, 3571–3594.

    MathSciNet  MATH  Google Scholar 

  • Watanabe, S. (2013). A widely applicable Bayesian information criterion. Journal of Machine Learning Research, 14, 867–897.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyuan Gao .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, G. (2018). Bayesian Fundamentals. In: Bayesian Claims Reserving Methods in Non-life Insurance with Stan. Springer, Singapore. https://doi.org/10.1007/978-981-13-3609-6_2

Download citation

Publish with us

Policies and ethics