Skip to main content

Genetic Aspect of Allied Disorders of Hirschsprung’s Disease

  • Chapter
  • First Online:
Hirschsprung’s Disease and the Allied Disorders

Abstract

Allied disorders of Hirschsprung’s disease (ADHD) have been proposed to be the concept of the functional obstruction of the intestine with the presence of ganglion cells in the terminal rectum. Coordinated action of the enteric nervous system (ENS), interstitial cells of Cajal (ICC), and smooth muscle cells (SMCs) is indispensable to normal gastrointestinal motility. Developmental defects affecting specific cell types or disturbing proper functioning of the ENS, ICC, or SMCs may result in variable degrees of abnormal motility, eventually leading to the development of intestinal neuromuscular disorders. In this chapter, we will discuss an overview of genetics of ADHD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muto M, et al. Japanese clinical practice guidelines for allied disorders of Hirschsprung’s disease, 2017. Pediatr Int. 2018;60:400–10.

    Article  PubMed  Google Scholar 

  2. Taguchi T, et al. The incidence and outcome of allied disorders of Hirschsprung’s disease in Japan: results from a nationwide survey. Asian J Surg. 2017;40:29–34.

    Article  PubMed  Google Scholar 

  3. De GR, Sarnelli G, Corinaldesi R, Stanghellini V. Advances in our understanding of the pathology of chronic intestinal pseudo-obstruction. Gut. 2004;53:1549–52.

    Article  Google Scholar 

  4. Moore SW. Advances in understanding functional variations in the Hirschsprung disease spectrum (variant Hirschsprung disease). Pediatr Surg Int. 2017;33:285–98.

    Article  CAS  PubMed  Google Scholar 

  5. Rao M, Gershon MD. Neurogastroenterology: the dynamic cycle of life in the enteric nervous system. Nat Rev Gastroenterol Hepatol. 2017;14:453–4.

    PubMed  Google Scholar 

  6. Brosens E, et al. Genetics of enteric neuropathies. Dev Biol. 2016;417:198–208.

    Article  CAS  PubMed  Google Scholar 

  7. Heanue TA, Pachnis V. Enteric nervous system development and Hirschsprung’s disease: advances in genetic and stem cell studies. Nat Rev Neurosci. 2007;8:466–79.

    Article  CAS  PubMed  Google Scholar 

  8. Amiel J, et al. Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet. 2008;45:1–14.

    Article  CAS  PubMed  Google Scholar 

  9. Obermayr F, Hotta R, Enomoto H, Young HM. Development and developmental disorders of the enteric nervous system. Nat Rev Gastroenterol Hepatol. 2013;10:43–57.

    Article  CAS  PubMed  Google Scholar 

  10. Bondurand N, Southard-Smith EM. Mouse models of Hirschsprung disease and other developmental disorders of the enteric nervous system: old and new players. Dev Biol. 2016;417:139–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature. 1994;367:380–3.

    Article  CAS  PubMed  Google Scholar 

  12. Sanchez MP, et al. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature. 1996;382:70–3.

    Article  CAS  PubMed  Google Scholar 

  13. Pichel JG, et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature. 1996;382:73–6.

    Article  CAS  PubMed  Google Scholar 

  14. Moore MW, et al. Renal and neuronal abnormalities in mice lacking GDNF. Nature. 1996;382:76–9.

    Article  CAS  PubMed  Google Scholar 

  15. Hosoda K, et al. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell. 1994;79:1267–76.

    Article  CAS  PubMed  Google Scholar 

  16. Baynash AG, et al. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell. 1994;79:1277–85.

    Article  CAS  Google Scholar 

  17. Shen L, et al. Gdnf haploin sufficiency causes Hirschsprung-like intestinal obstruction and early-onset lethality in mice. Am J Hum Genet. 2002;70:435–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yamada T, et al. Reduced expression of the endothelin receptor type B gene in piebald mice caused by insertion of a retroposon-like element in intron 1. J Biol Chem. 2006;281:10799–807.

    Article  CAS  PubMed  Google Scholar 

  19. Bates MD, Dunagan DT, Welch LC, Kaul A, Harvey RP. The Hlx homeobox transcription factor is required early in enteric nervous system development. BMC Dev Biol. 2006;6:33.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chalazonitis A, et al. Neurotrophin-3 is required for the survival-differentiation of subsets of developing enteric neurons. J Neurosci. 2001;21:5620–36.

    Article  CAS  PubMed  Google Scholar 

  21. Puig I, et al. Deletion of Pten in the mouse enteric nervous system induces ganglioneuromatosis and mimics intestinal pseudoobstruction. J Clin Invest. 2009;119:3586–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hatano M, et al. A novel pathogenesis of megacolon in Ncx/Hox11L.1 deficient mice. J Clin Invest. 1997;100:795–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shirasawa S, et al. Enx (Hox11L1)-deficient mice develop myenteric neuronal hyperplasia and megacolon. Nat Med. 1997;3:646–50.

    Article  CAS  PubMed  Google Scholar 

  24. Taguchi T, et al. Isolated intestinal neuronal dysplasia Type B (IND-B) in Japan: results from a nationwide survey. Pediatr Surg Int. 2014;30:815–22.

    Article  CAS  PubMed  Google Scholar 

  25. Lei J, Howard MJ. Targeted deletion of Hand2 in enteric neural precursor cells affects its functions in neurogenesis, neurotransmitter specification and gangliogenesis, causing functional aganglionosis. Development. 2011;138:4789–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Takaki M. Gut pacemaker cells: the interstitial cells of Cajal (ICC). J Smooth Muscle Res. 2003;39:137–61.

    Article  PubMed  Google Scholar 

  27. Huizinga JD, Chen JH. Interstitial cells of Cajal: update on basic and clinical science. Curr Gastroenterol Rep. 2014;16:363.

    Article  PubMed  Google Scholar 

  28. Streutker CJ, Huizinga JD, Campbell F, Ho J, Riddell RH. Loss of CD117 (c-kit)- and CD34-positive ICC and associated CD34-positive fibroblasts defines a subpopulation of chronic intestinal pseudo-obstruction. Am J Surg Pathol. 2003;27:228–35.

    Article  CAS  PubMed  Google Scholar 

  29. Jain D, Moussa K, Tandon M, Culpepper-Morgan J, Proctor DD. Role of interstitial cells of Cajal in motility disorders of the bowel. Am J Gastroenterol. 2003;98:618–24.

    Article  PubMed  Google Scholar 

  30. Lehtonen HJ, et al. Segregation of a missense variant in enteric smooth muscle actin gamma-2 with autosomal dominant familial visceral myopathy. Gastroenterology. 2012;143:1482–1491.e3.

    Article  CAS  PubMed  Google Scholar 

  31. Holla OL, Bock G, Busk OL, Isfoss BL. Familial visceral myopathy diagnosed by exome sequencing of a patient with chronic intestinal pseudo-obstruction. Endoscopy. 2014;46:533–7.

    Article  PubMed  Google Scholar 

  32. Thorson W, et al. De novo ACTG2 mutations cause congenital distended bladder, microcolon, and intestinal hypoperistalsis. Hum Genet. 2014;133:737–42.

    Article  CAS  PubMed  Google Scholar 

  33. Wangler MF, et al. Heterozygous de novo and inherited mutations in the smooth muscle actin (ACTG2) gene underlie megacystis-microcolon-intestinal hypoperistalsis syndrome. PLoS Genet. 2014;10:e1004258.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gauthier J, et al. A homozygous loss-of-function variant in MYH11 in a case with megacystis-microcolon-intestinal hypoperistalsis syndrome. Eur J Hum Genet. 2015;23:1266–8.

    Article  CAS  PubMed  Google Scholar 

  35. Yetman AT, Starr LJ. Newly described recessive MYH11 disorder with clinical overlap of Multisystemic smooth muscle dysfunction and Megacystis microcolon hypoperistalsis syndromes. Am J Med Genet A. 2018;176:1011–4.

    Article  CAS  PubMed  Google Scholar 

  36. Halim D, et al. Loss of LMOD1 impairs smooth muscle cytocontractility and causes megacystis microcolon intestinal hypoperistalsis syndrome in humans and mice. Proc Natl Acad Sci U S A. 2017;114:E2739–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Halim D, et al. Loss-of-function variants in MYLK cause recessive megacystis microcolon intestinal hypoperistalsis syndrome. Am J Hum Genet. 2017;101:123–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moreno CA, et al. Homozygous deletion in MYL9 expands the molecular basis of megacystis-microcolon-intestinal hypoperistalsis syndrome. Eur J Hum Genet. 2018;26:669–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Halim D, et al. ACTG2 variants impair actin polymerization in sporadic Megacystis Microcolon Intestinal Hypoperistalsis Syndrome. Hum Mol Genet. 2016;25:571–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kosuke Kirino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kirino, K., Yoshimaru, K. (2019). Genetic Aspect of Allied Disorders of Hirschsprung’s Disease. In: Taguchi, T., Matsufuji, H., Ieiri, S. (eds) Hirschsprung’s Disease and the Allied Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-13-3606-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3606-5_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3605-8

  • Online ISBN: 978-981-13-3606-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics