Skip to main content

Part of the book series: Springer Series on Bio- and Neurosystems ((SSBN,volume 9))

  • 900 Accesses

Abstract

A significant progress has been already accomplished in compressed sensing magnetic resonance image reconstruction research. A few recent works have successfully integrated CS-MRI into the existing MRI scanner for clinical studies and within a short span of time it would be also available at a commercial scale. This chapter mainly aims to throw lights upon creating a set of common goals that practical CS-MRI reconstruction algorithms should project for successful implementation in medical diagnosis, and a few current research trends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aharon, M., Elad, M., Bruckstein, A.: k-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  2. Aja-Fernandez, S., San Jose Estepar, R., Alberola Lopez, C., Westin, C.F.: Image quality assessment based on local variance. In: 28th IEEE EMBS, pp. 4815–4818. New York City, USA (2006)

    Google Scholar 

  3. Bilgin, A., Kim, Y., Liu, F., Nadar, M.S.: Dictionary design for compressed sensing MRI. Proc. Intl. Soc. Mag. Reson. Med, 4887 (2010)

    Google Scholar 

  4. Blanchard, J.D., Tanner, J.: GPU accelerated greedy algorithms for compressed sensing. Math. Program. Comput. 5(3), 267–304 (2013)

    Article  MathSciNet  Google Scholar 

  5. Borghi, A., Darbon, J., Peyronnet, S., Chan, T.F., Osher, S.: A simple compressive sensing algorithm for parallel many-core architectures. J. Signal Process. Syst. 71(1), 1–20 (2013)

    Article  Google Scholar 

  6. Chen, C., Huang, J.: Exploiting the wavelet structure in compressed sensing MRI. Magn. Reson. Imaging 32, 1377–1389 (2014)

    Article  Google Scholar 

  7. Chen, C., Li, Y., Huang, J.: Forest sparsity for multi-channel compressive sensing. IEEE Trans. Signal Process. 62(11), 2803–2813 (2014)

    Article  MathSciNet  Google Scholar 

  8. Chen, Y., Ye, X., Huang, F.: A novel method and fast algorithm for MR image reconstruction with significantly under-sampled data. Inverse Probl. Imaging 4, 223–240 (2010)

    Article  MathSciNet  Google Scholar 

  9. Chou, C.H., Li, Y.C.: A perceptually tuned subband image coder based on the measure of just-noticeable-distortion profile. IEEE Trans. Circuits Syst. Video Technol. 5(6), 467–476 (1995)

    Article  Google Scholar 

  10. Chow, L.S., Paramesran, R.: Review of medical image quality assessment. Biomed. Signal Process. Control. 27, 145–154 (2016)

    Article  Google Scholar 

  11. Chow, L.S., Rajagopal, H., Paramesran, R.: Correlation between subjective and objective assessment of magnetic resonance MR images. Magn. Reson. Imaging 34(6), 820–831 (2016)

    Article  Google Scholar 

  12. Datta, S., Deka, B.: Magnetic resonance image reconstruction using fast interpolated compressed sensing. J. Opt., 1–12 (2017)

    Google Scholar 

  13. Datta, S., Deka, B.: Multi-channel, multi-slice, and multi-contrast compressed sensing MRI using weighted forest sparsity and joint TV regularization priors. In: 7th International Conference on Soft Computing for Problem Solving (SocProS) (2017)

    Google Scholar 

  14. Datta, S., Deka, B.: An efficient interpolated compressed sensing reconstruction scheme for 3D MRI (2018). Manuscript submitted for publication

    Article  Google Scholar 

  15. Deka, B., Datta, S., Handique, S.: Wavelet tree support detection for compressed sensing MRI reconstruction. IEEE Signal Process. Lett. 25(5), 730–734 (2018)

    Article  Google Scholar 

  16. Hollingsworth, K.G.: Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction. Phys. Med. Biol. 60(21), R297 (2015)

    Article  Google Scholar 

  17. Jaspan, O., Fleysher, R., Lipton, M.: Compressed sensing MRI: A review of the clinical literature. Br. J. Radiol. 88(1056), 1–12 (2015)

    Article  Google Scholar 

  18. Kim, D., Trzasko, J., Smelyanskiy, M., Haider, C., Dubey, P., Manduca, A.: High-performance 3D compressive sensing MRI reconstruction using many-core architectures. Int. J. Biomed. Imaging 2011, 1–11 (2011)

    Article  Google Scholar 

  19. Liang, D., Xu, G., Wang, H., King, K.F., Xu, D., Ying, L.: Toeplitz random encoding MR imaging using compressed sensing. IEEE ISBI 2009, 270–273 (2009)

    Google Scholar 

  20. Lustig, M.: Sparse MRI. Ph.D. thesis, Electrical Engineering, Stanford University (2008)

    Google Scholar 

  21. Lustig, M., Keutzer, K., V.S.: The Berkeley Par Lab: progress in the parallel computing landscape, chap. In: Introduction to parallelizing compressed sensing magnetic resonance imaging, pp. 105–139. Microsoft Corporation (2013)

    Google Scholar 

  22. Majumdar, A.: Compressed Sensing for Magnetic Resonance Image Reconstruction. Cambridge University Press, New York (2015)

    Book  Google Scholar 

  23. Mann, L.W., Higgins, D.M., Peters, C.N., Cassidy, S., Hodson, K.K., Coombs, A., Taylo, R., Hollingsworth, K.G.: Accelerating MR imaging liver steatosis measurement using combined compressed sensing and parallel imaging: a quantitative evaluation. Radiology 278(1), 247–256 (2016)

    Article  Google Scholar 

  24. Murphey, M., Alley, M., Demmel, J., Keutzer, K., Vasanawala, S., Lustig, M.: Fast \(\ell _1\)-SPIRiT compressed sensing parralel imaging MRI: Scalable parallel implementation and clinically feasible runtime. IEEE Trans. Med. Imaging 31(6), 1250–1262 (2012)

    Article  Google Scholar 

  25. Otazo, R., Sodickson, D.K.: Adaptive compressed sensing MRI. In: Proceedings of ISMRM, p. 4867. (2010)

    Google Scholar 

  26. Pang, Y., Zhang, X.: Interpolated compressed sensing for 2D multiple slice fast MR imaging. Ed. Jonathan A. Coles. PLoS ONE 8(2), 1–5 (2013)

    Article  Google Scholar 

  27. Prieto, F., Guarini, M., Tejos, C., Irarrazaval, P.: Metrics for quantifying the quality of MR images. In: Proceedings of 17th Annual Meeting ISMRM, vol. 17, p. 4696 (2009)

    Google Scholar 

  28. Qu, X., Cao, X., Guo, D., Hu, C., Chen, Z.: Combined sparsifying transforms for compressed sensing mri. Electron. Lett. 46(2), 121–123 (2010)

    Article  Google Scholar 

  29. Ravishankar, S., Bresler, Y.: Mr image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans. Med. Imaging 30(5), 1028–1041 (2011)

    Article  Google Scholar 

  30. Sabbagh, M., Uecker, M., Powell, A.J, Leeser, M., Moghari, M.H.: Cardiac MRI compressed sensing image reconstruction with a graphics processing unit. In: 2016 10th International Symposium on Medical Information and Communication Technology (ISMICT), pp. 1–5 (2016)

    Google Scholar 

  31. Schaetz, S., Voit, D., Frahm, J., Uecker, M.: Accelerated computing in magnetic resonance imaging: Real-time imaging using nonlinear inverse reconstruction. Comput. Math. Methods Med. 2017, 1–11 (2017)

    Article  MathSciNet  Google Scholar 

  32. Sinha, N., Ramakrishnan, A.: Quality assessment in magnetic resonance images. Crit. Rev. Biomed. Eng. 38, 127–141 (2010)

    Article  Google Scholar 

  33. Toledano-Massiah, S., Sayadi, A., de Boer, R.A., Gelderblom, J., Mahdjoub, R., Gerber, S., Zuber, M., Zins, M., Hodel, J.: Accuracy of the compressed sensing accelerated 3d-flair sequence for the detection of ms plaques at 3t. AJNR. Am. J. Neuroradiol., 1–5 (2018)

    Google Scholar 

  34. Uecker, M., Ong, F., Tamir, J.I., Bahri, D., Virtue, P., Cheng, J.Y., Zhang, T., Lustig, M.: Berkeley advanced reconstruction toolbox. Proc. Intl. Soc. Mag. Reson. Med. 23, 2486 (2015)

    Google Scholar 

  35. Vasanawala, S., Murphy, M., Alley, M., Lai, P., Keutzer, K., Pauly, J., Lustig, M.: Practical parallel imaging compressed sensing MRI: Summary of two years of experience in accelerating body MRI of pediatric patients. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro 2011, pp. 1039–1043. Chicago, IL (2011)

    Google Scholar 

  36. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  37. Yin, W., Morgan, S., Yang, J., Zhang, Y.: Practical compressive sensing with toeplitz and circulant matrices. In: Proc. SPIE Vis. Commun. Image Process. 7744, 1–10 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhabesh Deka .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deka, B., Datta, S. (2019). CS-MRI Benchmarks and Current Trends. In: Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms. Springer Series on Bio- and Neurosystems, vol 9. Springer, Singapore. https://doi.org/10.1007/978-981-13-3597-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3597-6_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3596-9

  • Online ISBN: 978-981-13-3597-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics