Skip to main content

Photothermal Heating Study Using Er2O3 Photoluminescence Nanothermometry

  • Chapter
  • First Online:
Photo-Thermal Spectroscopy with Plasmonic and Rare-Earth Doped (Nano)Materials

Abstract

A new optical probe technique using a laser-trapped erbium oxide nanoparticle (~150 nm) can measure absolute temperature with a spatial resolution on the size of the nanoparticle. This technique (scanning optical probe thermometry) is used to collect the thermal image of an optically excited gold nanostructures. The thermal profile has a Gaussian line shape that is a convolution of the point spread function of the scanning optical probe thermometer and the true thermal profile. A convolution analysis reveals that the point spread function of our measurement is a Gaussian with a FWHM of 165 nm. We attribute the width of this function to clustering of Er2O3 nanoparticles in solution. Also, the scanning optical probe thermometer is used to measure the temperature where vapor nucleation occurs. Subsequently, the temperature inside the vapor bubble rises to the melting point of the gold nanostructure (~1300) where a temperature plateau is observed. The rise in temperature is attributed to inhibition of thermal transfer to the surrounding liquid by the thermal insulating vapor cocoon. This chapter is reprinted (adapted) with permission from Applied Physics A. (2016) 122: 340. Copyright 2016 Springer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boyer D, Tamarat P, Maali A, Lounis B, Orrit M (2002) Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297(5584):1160–1163

    Article  CAS  Google Scholar 

  2. Cognet L, Tardin C, Boyer D, Choquet D, Tamarat P, Lounis B (2003) Single metallic nanoparticle imaging for protein detection in cells. Proc Natl Acad Sci USA 100(20):11350–11355

    Article  CAS  Google Scholar 

  3. Berciaud S, Cognet L, Blab GA, Lounis B (2004) Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals. Phys Rev Lett 93:(25)

    Article  Google Scholar 

  4. Baffou G, Kreuzer MP, Kulzer F, Quidant R (2009) Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy. Opt Express 17(5):3291–3298

    Article  CAS  Google Scholar 

  5. Baffou G, Bon P, Savatier J, Polleux J, Zhu M, Merlin M, Rigneault H, Monneret S (2012) Thermal imaging of nanostructures by quantitative optical phase analysis. ACS Nano 6(3):2452–2458

    Article  CAS  Google Scholar 

  6. Pollock HM, Hammiche A (2001) Micro-thermal analysis: techniques and applications. J Phys D-Appl Phys 34(9):R23–R53

    Article  CAS  Google Scholar 

  7. Sadat S, Tan A, Chua YJ, Reddy P (2010) Nanoscale thermometry using point contact thermocouples. Nano Lett 10(7):2613–2617

    Article  CAS  Google Scholar 

  8. Carlson MT, Khan A, Richardson HH (2011) Local temperature determination of optically excited nanoparticles and nanodots. Nano Lett 11(3):1061–1069

    Article  CAS  Google Scholar 

  9. Loew P, Kim B, Takama N, Bergaud C (2008) High-spatial-resolution surface-temperature mapping using fluorescent thermometry. Small 4(7):908–914

    Article  Google Scholar 

  10. Vetrone F, Naccache R, Zamarron A, Juarranz de la Fuente A, Sanz-Rodriguez F, Martinez Maestro L, Martin Rodriguez E, Jaque D, Garcia Sole J, Capobianco JA (2010) Temperature sensing using fluorescent nanothermometers. ACS Nano 4(6):3254–3258

    Article  CAS  Google Scholar 

  11. Li S, Zhang K, Yang J, Lin L, Yang H (2007) Single quantum dots as local temperature markers. Nano Lett

    Google Scholar 

  12. Van de Broek B, Grandjean D, Trekker J, Ye J, Verstreken K, Maes G, Borghs G, Nikitenko S, Lagae L, Bartic C, Temst K, Van Bael MJ (2011) Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy. Small 7(17):2498–2506

    Google Scholar 

  13. Setoura K, Werner D, Hashimoto S (2012) Optical scattering spectral thermometry and refractometry of a single gold nanoparticle under CW laser excitation. J Phys Chem C 116(29):15458–15466

    Article  CAS  Google Scholar 

  14. Bendix PM, Nader S, Reihani S, Oddershede LB (2010) Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers. ACS Nano 4(4):2256–2262

    Article  CAS  Google Scholar 

  15. Lee J, Govorov AO, Kotov NA (2005) Bioconjugated superstructures of CdTe nanowires and nanoparticles: multistep cascade forster resonance energy transfer and energy channeling. Nano Lett 5(10):2063–2069

    Article  CAS  Google Scholar 

  16. Govorov AO, Zhang W, Skeini T, Richardson H, Lee J, Kotov NA (2006) Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res Lett 1(1):84–90

    Article  Google Scholar 

  17. Garter MJ, Steckl AJ (2002) Temperature behavior of visible and infrared electroluminescent devices fabricated on erbium-doped GaN. IEEE Trans Electron Device 49(1):48–54

    Article  CAS  Google Scholar 

  18. Govorov AO, Richardson HH (2007) Generating heat with metal nanoparticles. Nano Today 2(1):30–38

    Article  Google Scholar 

  19. Liang Z, Sasikumar K, Keblinski P (2014) Thermal transport across a substrate-thin-film interface: effects of film thickness and surface roughness. Phys Rev Lett 113:(6)

    Google Scholar 

  20. Carlson MT, Green AJ, Khan A, Richardson HH (2012) Optical measurement of thermal conductivity and absorption cross-section of gold nanowires. J Phys Chem C 116(15):8798–8803

    Article  CAS  Google Scholar 

  21. Baral S, Green AJ, Livshits MY, Govorov AO, Richardson HH (2014) Comparison of vapor formation of water at the solid/water interface to colloidal solutions using optically excited gold nanostructures. ACS Nano 8(2):1439–1448

    Article  CAS  Google Scholar 

  22. Kotaidis V, Plech A (2005) Cavitation dynamics on the nanoscale. Appl Phys Lett 87(21):3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susil Baral .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baral, S., Rafiei Miandashti, A., H. Richardson, H. (2019). Photothermal Heating Study Using Er2O3 Photoluminescence Nanothermometry. In: Photo-Thermal Spectroscopy with Plasmonic and Rare-Earth Doped (Nano)Materials. SpringerBriefs in Applied Sciences and Technology(). Springer, Singapore. https://doi.org/10.1007/978-981-13-3591-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3591-4_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3590-7

  • Online ISBN: 978-981-13-3591-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics