Skip to main content

Nanoscale Temperature Measurement Under Optical Illumination Using AlGaN:Er3+ Photoluminescence Nanothermometry

  • Chapter
  • First Online:
Photo-Thermal Spectroscopy with Plasmonic and Rare-Earth Doped (Nano)Materials

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSNANOSCIENCE))

  • 346 Accesses

Abstract

In this chapter, we present working principle and experimental details of AlGaN:Er3+ nanothermometry technique based on Er3+ emission that offers nanoscale temperature measurement and thermal imaging of nanoparticles/nanostructures under optical illumination. A thin film of Al0.94Ga0.06N with embedded Er3+ ions is used as a thermal sensor for nanoscale temperature measurement and thermal imaging of optically excited gold nanostructures under far-field illumination. This thermal sensor film is based on relative photoluminescence intensities of energy transitions from thermally coupled 2H11/2 and the 4S3/2 energy levels to the 4I15/2 energy level of the Er3+ ions. The temperature profile around an optically excited nanostructure can be generated under imaging mode, and a dynamic measurement of temperature can also be performed using this thermal sensor film.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen G (2001) Ballistic-diffusive heat-conduction equations. Phys Rev Lett 86(11):2297–2300

    Article  CAS  Google Scholar 

  2. Chen G (1996) Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles. J Heat Transf Trans Asme 118(3):539–545

    Article  CAS  Google Scholar 

  3. Siemens ME, Yang R, Nelson KA, Anderson EH, Murnane MM, Kapteyn HC (2010) Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft x-ray beams. Nat Mater 9:26–30

    Article  CAS  Google Scholar 

  4. Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Maris HJ, Merlin R, Phillpot SR (2003) Nanoscale thermal transport. J Appl Phys 93(2):793–818

    Article  CAS  Google Scholar 

  5. Carlson MT, Khan A, Richardson HH (2011) Local temperature determination of optically excited nanoparticles and nanodots. Nano Lett 11(3):1061–1069

    Article  CAS  Google Scholar 

  6. Gurumurugan K, Chen H, Harp GR, Jadwisienczak WM, Lozykowski HJ (1999) Visible cathodoluminescence of Er-doped amorphous AlN thin films. Appl Phys Lett 74(20):3008–3010

    Article  CAS  Google Scholar 

  7. Garter MJ, Steckl AJ (2002) Temperature behavior of visible and infrared electroluminescent devices fabricated on erbium-doped GaN. IEEE Trans Elect Dev 49(1):48–54

    Article  CAS  Google Scholar 

  8. Paez G, Strojnik M (2003) Erbium-doped optical fiber fluorescence temperature sensor with enhanced sensitivity, a high signal-to-noise ratio, and a power ratio in the 520–530- and 550–560-nm bands. Appl Opt 42(16):3251–3258

    Article  Google Scholar 

  9. Wade SA, Collins SF, Baxter GW (2003) Fluorescence intensity ratio technique for optical fiber point temperature sensing. J Appl Phys 94(8):4743–4756

    Article  CAS  Google Scholar 

  10. Govorov AO, Zhang W, Skeini T, Richardson H, Lee J, Kotov NA (2006) Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res Lett 1(1):84–90

    Article  Google Scholar 

  11. Baral S (2017) Fundamental Studies of Photothermal Properties of a Nanosystem and the Surrounding Medium Using Er3+ Photoluminescence Nanothermometry. (Electronic Thesis or Dissertation). Retrieved from https://etd.ohiolink.edu/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susil Baral .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baral, S., Rafiei Miandashti, A., H. Richardson, H. (2019). Nanoscale Temperature Measurement Under Optical Illumination Using AlGaN:Er3+ Photoluminescence Nanothermometry. In: Photo-Thermal Spectroscopy with Plasmonic and Rare-Earth Doped (Nano)Materials. SpringerBriefs in Applied Sciences and Technology(). Springer, Singapore. https://doi.org/10.1007/978-981-13-3591-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3591-4_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3590-7

  • Online ISBN: 978-981-13-3591-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics