Skip to main content

Theory of Photo-Thermal Effects for Plasmonic Nanocrystals and Assemblies

  • Chapter
  • First Online:
Photo-Thermal Spectroscopy with Plasmonic and Rare-Earth Doped (Nano)Materials

Abstract

In this chapter we use various theories and equations to describe the photothermal properties of different plasmonic structures when being excited by an incident electromagnetic wave. These equations are based on Maxwell equations and the heat transfer equations. Although the solution to these equations are very challenging or impossible to obtain for most structures, this chapter provides an efficient first approximation that is suitable for many recurrent systems with various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111(10):3806–3819

    Article  CAS  Google Scholar 

  2. Bohren CFH (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  3. Choy TC (1999) Effective medium theory: principles and applications. Oxford University Press, New York

    Google Scholar 

  4. Govorov AO, Zhang H, Demir HV, Gun’ko YK (2014) Photogeneration of hot plasmonic electrons with metal nanocrystals: quantum description and potential applications. Nano Today 9(1):85–101

    Article  CAS  Google Scholar 

  5. Garcia MA (2012) Surface plasmons in metallic nanoparticles: fundamentals and applications. J Phys D Appl Phys 45(38):389501

    Article  Google Scholar 

  6. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677

    Article  CAS  Google Scholar 

  7. Khosravi Khorashad L, Besteiro LV, Wang Z, Valentine J, Govorov AO (2016) Localization of excess temperature using plasmonic hot spots in metal nanostructures: combining nano-optical antennas with the fano effect. J Phys Chem C 120(24):13215–13226

    Article  CAS  Google Scholar 

  8. Johnson PB, Christy RW (1972) Optical-constants of noble-metals. Phys Rev B 6(12):4370–4379

    Article  CAS  Google Scholar 

  9. Palik ED (1985) Handbook of optical constants of solids. Academic Press, New York

    Google Scholar 

  10. Carslaw HS, Jaeger JC (1993) Conduction of heat in solids. Oxford University Press, London

    Google Scholar 

  11. Pitsillides CM, Joe EK, Wei XB, Anderson RR, Lin CP (2003) Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 84(6):4023–4032

    Article  CAS  Google Scholar 

  12. Govorov AO, Richardson HH (2007) Generating heat with metal nanoparticles. Nano Today 2(1):30–38

    Article  Google Scholar 

  13. Sau TK, Rogach AL (2012) Complex-shaped metal nanoparticles. Verlag & Co. KGaA, Weinheim, Germany

    Google Scholar 

  14. Govorov AO, Zhang W, Skeini T, Richardson H, Lee J, Kotov NA (2006) Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res Lett 1(1):84–90

    Article  Google Scholar 

  15. Hrelescu C, Stehr J, Ringler M, Sperling RA, Parak WJ, Klar TA, Feldmann J (2010) DNA melting in gold nanostove clusters. J Phys Chem C 114(16):7401–7411

    Article  CAS  Google Scholar 

  16. Richardson HH, Hickman ZN, Govorov AO, Thomas AC, Zhang W, Kordesch ME (2006) Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting. Nano Lett 6(4):783–788

    Article  CAS  Google Scholar 

  17. Zeng N, Murphy AB (2009) Heat generation by optically and thermally interacting aggregates of gold nanoparticles under illumination. Nanotechnology 20(37):375702

    Article  Google Scholar 

  18. Roller E-M, Besteiro LV, Pupp C, Khorashad LK, Govorov AO, Liedl T (2017) Hotspot-mediated non-dissipative and ultrafast plasmon passage. Nat Phys 13:761

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Yazmin Santiago .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santiago, E.Y., Khosravi Khorashad, L., O. Govorov, A. (2019). Theory of Photo-Thermal Effects for Plasmonic Nanocrystals and Assemblies. In: Photo-Thermal Spectroscopy with Plasmonic and Rare-Earth Doped (Nano)Materials. SpringerBriefs in Applied Sciences and Technology(). Springer, Singapore. https://doi.org/10.1007/978-981-13-3591-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3591-4_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3590-7

  • Online ISBN: 978-981-13-3591-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics