Antimicrobial and Cell-Penetrating Peptides: How to Understand Two Distinct Functions Despite Similar Physicochemical Properties

  • Ines NeundorfEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1117)


Antimicrobial and cell-penetrating peptides are both classes of membrane-active peptides sharing similar physicochemical properties. Both kinds of peptides have attracted much attention owing to their specific features. AMPs disrupt cell membranes of bacteria and display urgently needed antibiotic substances with alternative modes of action. Since the multidrug resistance of bacterial pathogens is a more and more raising concern, AMPs have gained much interest during the past years. On the other side, CPPs enter eukaryotic cells without substantially affecting the plasma membrane. They can be used as drug delivery platforms and have proven their usefulness in various applications. However, although both groups of peptides are quite similar, their intrinsic activity is often different, and responsible factors are still in discussion. The aim of this chapter is to summarize and shed light on recent findings and concepts dealing with differences and similarities of AMPs and CPPs and to understand these different functions.


Antimicrobial peptides Cell-penetrating peptides Plasma membranes Drug delivery Lipid-peptide interaction 



Antimicrobial peptide


Circular dichroism


Cell-penetrating peptide


Chondroitin sulfate


Differential scanning calorimetry


Electron microscopy


Electron paramagnetic resonance


Food and Drug Administration


Functional membrane microdomain




Giant plasma membrane vesicle


Giant unilamellar vesicle


Heparan sulfate




Liquid disordered


Liquid ordered


Lipoteichoic acid


Large unilamellar vesicle


Matrix-assisted laser desorption/ionization


Mass spectrometry


Nuclear magnetic resonance


One bead one compound












Quantitative structure-activity relation-ship


Reactive oxygen species


Stimulated emission depletion


Small unilamellar vesicle


  1. Alvares DS, Viegas TG, Ruggiero Neto J (2017) Lipid-packing perturbation of model membranes by pH-responsive antimicrobial peptides. Biophys Rev 9(5):669–682. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alves ID, Jiao CY, Aubry S, Aussedat B, Burlina F, Chassaing G, Sagan S (2010) Cell biology meets biophysics to unveil the different mechanisms of penetration internalization in cells. Biochim Biophys Acta 1798(12):2231–2239. CrossRefPubMedGoogle Scholar
  3. Baxter AA, Lay FT, Poon IKH, Kvansakul M, Hulett MD (2017) Tumor cell membrane-targeting cationic antimicrobial peptides: novel insights into mechanisms of action and therapeutic prospects. Cell Mol Life Sci 74(20):3809–3825. CrossRefPubMedGoogle Scholar
  4. Bergmann R, Splith K, Pietzsch J, Bachmann M, Neundorf I (2017) Biological characterization of novel nitroimidazole-peptide conjugates in vitro and in vivo. J Pep Sci Off Publ Eur Pep Soc 23(7–8):597–609. CrossRefGoogle Scholar
  5. Brand GD, Ramada MHS, Genaro-Mattos TC, Bloch C Jr (2018) Towards an experimental classification system for membrane active peptides. Sci Rep 8(1):1194. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brender JR, McHenry AJ, Ramamoorthy A (2012) Does cholesterol play a role in the bacterial selectivity of antimicrobial peptides? Front Immunol 3:195. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brown DA (2002) Isolation and use of rafts. Curr Protoc Immunol Chapter 11:Unit 11:10. CrossRefPubMedGoogle Scholar
  8. Carney RP, Thillier Y, Kiss Z, Sahabi A, Heleno Campos JC, Knudson A, Liu R, Olivos D, Saunders M, Tian L, Lam KS (2017) Combinatorial library screening with liposomes for discovery of membrane active peptides. ACS Comb Sci 19(5):299–307. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Caveney NA, Li FK, Strynadka NC (2018) Enzyme structures of the bacterial peptidoglycan and wall teichoic acid biogenesis pathways. Curr Opin Struct Biol 53:45–58. CrossRefPubMedGoogle Scholar
  10. Chen CJ, Tsai KC, Kuo PH, Chang PL, Wang WC, Chuang YJ, Chang MDT (2015) A heparan sulfate-binding cell penetrating peptide for tumor targeting and migration inhibition. Biomed Res Int:237969. Google Scholar
  11. Chen L, Zhang Q, Yuan X, Cao Y, Yuan Y, Yin H, Ding X, Zhu Z, Luo SZ (2017) How charge distribution influences the function of membrane-active peptides: lytic or cell-penetrating? Int J Biochem Cell Biol 83:71–75. CrossRefPubMedGoogle Scholar
  12. da Costa JP, Cova M, Ferreira R, Vitorino R (2015) Antimicrobial peptides: an alternative for innovative medicines? Appl Microbiol Biotechnol 99(5):2023–2040. CrossRefPubMedGoogle Scholar
  13. Deslouches B, Di YP (2017) Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget 8(28):46635–46651. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Deslouches B, Phadke SM, Lazarevic V, Cascio M, Islam K, Montelaro RC, Mietzner TA (2005) De novo generation of cationic antimicrobial peptides: influence of length and tryptophan substitution on antimicrobial activity. Antimicrob Agents Chemother 49(1):316–322. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Deslouches B, Steckbeck JD, Craigo JK, Doi Y, Mietzner TA, Montelaro RC (2013) Rational design of engineered cationic antimicrobial peptides consisting exclusively of arginine and tryptophan, and their activity against multidrug-resistant pathogens. Antimicrob Agents Chemother 57(6):2511–2521. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Di Pisa M, Chassaing G, Swiecicki JM (2015) Translocation mechanism(s) of cell-penetrating peptides: biophysical studies using artificial membrane bilayers. Biochemistry 54(2):194–207. CrossRefPubMedGoogle Scholar
  17. dos Santos Cabrera MP, Arcisio-Miranda M, Gorjao R, Leite NB, de Souza BM, Curi R, Procopio J, Ruggiero Neto J, Palma MS (2012) Influence of the bilayer composition on the binding and membrane disrupting effect of Polybia-MP1, an antimicrobial mastoparan peptide with leukemic T-lymphocyte cell selectivity. Biochemistry 51(24):4898–4908. CrossRefPubMedGoogle Scholar
  18. Fadnes B, Rekdal O, Uhlin-Hansen L (2009) The anticancer activity of lytic peptides is inhibited by heparan sulfate on the surface of the tumor cells. BMC Cancer 9:183. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fadnes B, Uhlin-Hansen L, Lindin I, Rekdal O (2011) Small lytic peptides escape the inhibitory effect of heparan sulfate on the surface of cancer cells. BMC Cancer 11:116. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Felicio MR, Silva ON, Goncalves S, Santos NC, Franco OL (2017) Peptides with dual antimicrobial and anticancer activities. Front Chem 5:5. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Feni L, Neundorf I (2017) The current role of cell-penetrating peptides in cancer therapy. Adv Exp Med Biol 1030:279–295. CrossRefPubMedGoogle Scholar
  22. Galdiero S, Falanga A, Cantisani M, Vitiello M, Morelli G, Galdiero M (2013) Peptide-lipid interactions: experiments and applications. Int J Mol Sci 14(9):18758–18789. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gautam A, Chaudhary K, Kumar R, Sharma A, Kapoor P, Tyagi A, Open Source Drug Discovery Consortium, Raghava GP (2013) In silico approaches for designing highly effective cell penetrating peptides. J Transl Med 11:74. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gronewold A, Horn M, Randelovic I, Tovari J, Munoz Vazquez S, Schomacker K, Neundorf I (2017) Characterization of a cell-penetrating peptide with potential anticancer activity. ChemMedChem 12(1):42–49. CrossRefPubMedGoogle Scholar
  25. Gruenheid S, Le Moual H (2012) Resistance to antimicrobial peptides in Gram-negative bacteria. FEMS Microbiol Lett 330(2):81–89. CrossRefPubMedGoogle Scholar
  26. Horn M, Reichart F, Natividad-Tietz S, Diaz D, Neundorf I (2016) Tuning the properties of a novel short cell-penetrating peptide by intramolecular cyclization with a triazole bridge. Chem Commun (Camb) 52(11):2261–2264. CrossRefGoogle Scholar
  27. Jobin ML, Alves ID (2014) On the importance of electrostatic interactions between cell penetrating peptides and membranes: a pathway toward tumor cell selectivity? Biochimie 107(Pt A):154–159. CrossRefPubMedGoogle Scholar
  28. Kalafatovic D, Giralt E (2017) Cell-penetrating peptides: design strategies beyond primary structure and amphipathicity. Molecules 22(11):1929. CrossRefPubMedCentralGoogle Scholar
  29. Kauffman WB, Fuselier T, He J, Wimley WC (2015) Mechanism matters: a taxonomy of cell penetrating peptides. Trends Biochem Sci 40(12):749–764. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kawaguchi Y, Takeuchi T, Kuwata K, Chiba J, Hatanaka Y, Nakase I, Futaki S (2016) Syndecan-4 is a receptor for Clathrin-mediated endocytosis of arginine-rich cell-penetrating peptides. Bioconjug Chem 27(4):1119–1130. CrossRefPubMedGoogle Scholar
  31. Koller D, Lohner K (2014) The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes. Biochim Biophys Acta 1838(9):2250–2259. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Last NB, Schlamadinger DE, Miranker AD (2013) A common landscape for membrane-active peptides. Protein Sci 22(7):870–882. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lattig-Tunnemann G, Prinz M, Hoffmann D, Behlke J, Palm-Apergi C, Morano I, Herce HD, Cardoso MC (2011) Backbone rigidity and static presentation of guanidinium groups increases cellular uptake of arginine-rich cell-penetrating peptides. Nat Commun 2:453. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Le CF, Fang CM, Sekaran SD (2017) Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob Agents Chemother 61(4).
  35. Lee EY, Fulan BM, Wong GC, Ferguson AL (2016) Mapping membrane activity in undiscovered peptide sequence space using machine learning. Proc Natl Acad Sci U S A 113(48):13588–13593. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lee EY, Wong GCL, Ferguson AL (2018) Machine learning-enabled discovery and design of membrane-active peptides. Bioorg Med Chem 26(10):2708–2718. CrossRefPubMedGoogle Scholar
  37. Letoha T, Keller-Pinter A, Kusz E, Kolozsi C, Bozso Z, Toth G, Vizler C, Olah Z, Szilak L (2010) Cell-penetrating peptide exploited syndecans. BBA-Biomembranes 1798(12):2258–2265. CrossRefPubMedGoogle Scholar
  38. Liu S, Fan L, Sun J, Lao X, Zheng H (2017) Computational resources and tools for antimicrobial peptides. J Pep Sci Off Publ Eur Pep Soc 23(1):4–12. CrossRefGoogle Scholar
  39. Lopez D (2015) Molecular composition of functional microdomains in bacterial membranes. Chem Phys Lipids 192:3–11. CrossRefPubMedGoogle Scholar
  40. Maria-Neto S, de Almeida KC, Macedo ML, Franco OL (2015) Understanding bacterial resistance to antimicrobial peptides: from the surface to deep inside. Biochim Biophys Acta 1848(11 Pt B):3078–3088. CrossRefPubMedGoogle Scholar
  41. McHenry AJ, Sciacca MF, Brender JR, Ramamoorthy A (2012) Does cholesterol suppress the antimicrobial peptide induced disruption of lipid raft containing membranes? Biochim Biophys Acta 1818(12):3019–3024. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Neundorf I, Rennert R, Hoyer J, Schramm F, Lobner K, Kitanovic I, Wolfl S (2009) Fusion of a short HA2-derived peptide sequence to cell-penetrating peptides improves cytosolic uptake, but enhances cytotoxic activity. Pharmaceuticals (Basel) 2(2):49–65. CrossRefGoogle Scholar
  43. Oren Z, Lerman JC, Gudmundsson GH, Agerberth B, Shai Y (1999) Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J 341(Pt 3):501–513CrossRefGoogle Scholar
  44. Pae J, Saalik P, Liivamagi L, Lubenets D, Arukuusk P, Langel U, Pooga M (2014) Translocation of cell-penetrating peptides across the plasma membrane is controlled by cholesterol and microenvironment created by membranous proteins. J Control Release 192:103–113. CrossRefPubMedGoogle Scholar
  45. Patel S, Akhtar N (2017) Antimicrobial peptides (AMPs): the quintessential ‘offense and defense’ molecules are more than antimicrobials. Biomed Pharmacother 95:1276–1283. CrossRefPubMedGoogle Scholar
  46. Piotrowska U, Sobczak M, Oledzka E (2017) Current state of a dual behaviour of antimicrobial peptides-therapeutic agents and promising delivery vectors. Chem Biol Drug Des 90(6):1079–1093. CrossRefPubMedGoogle Scholar
  47. Pirtskhalava M, Gabrielian A, Cruz P, Griggs HL, Squires RB, Hurt DE, Grigolava M, Chubinidze M, Gogoladze G, Vishnepolsky B, Alekseyev V, Rosenthal A, Tartakovsky M (2016) DBAASP v.2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Res 44(13):6503. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Pushpanathan M, Gunasekaran P, Rajendhran J (2013) Antimicrobial peptides: versatile biological properties. Int J Pept 2013:675391. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ran S, Downes A, Thorpe PE (2002) Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res 62(21):6132–6140PubMedGoogle Scholar
  50. Raucher D, Ryu JS (2015) Cell-penetrating peptides: strategies for anticancer treatment. Trends Mol Med. CrossRefGoogle Scholar
  51. Reinhardt A, Neundorf I (2016) Design and application of antimicrobial peptide conjugates. Int J Mol Sci 17(5):701. CrossRefPubMedCentralGoogle Scholar
  52. Reinhardt A, Horn M, Schmauck JP, Brohl A, Giernoth R, Oelkrug C, Schubert A, Neundorf I (2014) Novel imidazolium salt – peptide conjugates and their antimicrobial activity. Bioconjug Chem 25(12):2166–2174. CrossRefPubMedGoogle Scholar
  53. Rodriguez Plaza JG, Morales-Nava R, Diener C, Schreiber G, Gonzalez ZD, Lara Ortiz MT, Ortega Blake I, Pantoja O, Volkmer R, Klipp E, Herrmann A, Del Rio G (2014) Cell penetrating peptides and cationic antibacterial peptides: two sides of the same coin. J Biol Chem 289(21):14448–14457. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Roudi R, Syn NL, Roudbary M (2017) Antimicrobial peptides as biologic and immunotherapeutic agents against cancer: a comprehensive overview. Front Immunol 8:1320. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sezgin E, Levental I, Mayor S, Eggeling C (2017) The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol 18(6):361–374. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Sierra JM, Fuste E, Rabanal F, Vinuesa T, Vinas M (2017) An overview of antimicrobial peptides and the latest advances in their development. Expert Opin Biol Ther 17(6):663–676. CrossRefPubMedGoogle Scholar
  57. Simons K, Vaz WL (2004) Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 33:269–295. CrossRefPubMedGoogle Scholar
  58. Splith K, Neundorf I (2011) Antimicrobial peptides with cell-penetrating peptide properties and vice versa. Eur Biophys J EBJ 40(4):387–397. CrossRefPubMedGoogle Scholar
  59. Splith K, Bergmann R, Pietzsch J, Neundorf I (2012) Specific targeting of hypoxic tumor tissue with nitroimidazole-peptide conjugates. ChemMedChem 7(1):57–61. CrossRefPubMedGoogle Scholar
  60. Szczepanski C, Tenstad O, Baumann A, Martinez A, Myklebust R, Bjerkvig R, Prestegarden L (2014) Identification of a novel lytic peptide for the treatment of solid tumours. Genes Cancer 5(5–6):186–200PubMedPubMedCentralGoogle Scholar
  61. Tyagi A, Kapoor P, Kumar R, Chaudhary K, Gautam A, Raghava GP (2013) In silico models for designing and discovering novel anticancer peptides. Sci Rep 3:2984. CrossRefPubMedGoogle Scholar
  62. Usmani SS, Bedi G, Samuel JS, Singh S, Kalra S, Kumar P, Ahuja AA, Sharma M, Gautam A, Raghava GPS (2017) THPdb: database of FDA-approved peptide and protein therapeutics. PLoS One 12(7):e0181748. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Utsugi T, Schroit AJ, Connor J, Bucana CD, Fidler IJ (1991) Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res 51(11):3062–3066Google Scholar
  64. Vicidomini G, Bianchini P, Diaspro A (2018) STED super-resolved microscopy. Nat Methods 15(3):173–182. CrossRefPubMedGoogle Scholar
  65. Wadhwani P, Reichert J, Burck J, Ulrich AS (2012) Antimicrobial and cell-penetrating peptides induce lipid vesicle fusion by folding and aggregation. Eur Biophys J EBJ 41(2):177–187. CrossRefPubMedGoogle Scholar
  66. Waghu FH, Barai RS, Gurung P, Idicula-Thomas S (2016) CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res 44(D1):D1094–D1097. CrossRefGoogle Scholar
  67. Walrant A, Matheron L, Cribier S, Chaignepain S, Jobin ML, Sagan S, Alves ID (2013) Direct translocation of cell-penetrating peptides in liposomes: a combined mass spectrometry quantification and fluorescence detection study. Anal Biochem 438(1):1–10. CrossRefPubMedGoogle Scholar
  68. Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44(D1):D1087–D1093. CrossRefGoogle Scholar
  69. Watkins CL, Schmaljohann D, Futaki S, Jones AT (2009) Low concentration thresholds of plasma membranes for rapid energy-independent translocation of a cell-penetrating peptide. Biochem J 420(2):179–189. CrossRefPubMedGoogle Scholar
  70. Wu D, Gao Y, Qi Y, Chen L, Ma Y, Li Y (2014) Peptide-based cancer therapy: opportunity and challenge. Cancer Lett 351(1):13–22. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Institute for BiochemistryUniversity of CologneCologneGermany

Personalised recommendations