Design of Antimicrobial Peptides: Progress Made with Human Cathelicidin LL-37

  • Guangshun WangEmail author
  • Jayaram Lakshmaiah Narayana
  • Biswajit Mishra
  • Yingxia Zhang
  • Fangyu Wang
  • Chunfeng Wang
  • D. Zarena
  • Tamara Lushnikova
  • Xiuqing Wang
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1117)


The incorporation of the innate immune system into humans is essential for survival and health due to the rapid replication of invading microbes and the delayed action of the adaptive immune system. Antimicrobial peptides are important components of human innate immunity. Over 100 such peptides have been identified in various human tissues. Human cathelicidin LL-37 is best studied, and there has been a growing interest in designing new peptides based on LL-37. This chapter describes the alternative processing of the human cathelicidin precursor, protease digestion, and lab cutting of LL-37. Both a synthetic peptide library and structure-based design are utilized to identify the active regions. Although challenging, the determination of the 3D structure of LL-37 enabled the identification of the core antimicrobial region. The minimal region of LL-37 can be function-dependent. We discuss the design and potential applications of LL-37 into antibacterial, antibiofilm, antiviral, antifungal, immune modulating, and anticancer peptides. LL-37 has been engineered into 17BIPHE2, a stable, selective, and potent antimicrobial, antibiofilm, and anticancer peptide. Both 17BIPHE2 and SAAP-148 can eliminate the ESKAPE pathogens and show topical in vivo antibiofilm efficacy. Also discussed are other application strategies, including peptide formulation, antimicrobial implants, and peptide-inducing factors such as vitamin D and sunlight. Finally, we summarize what we learned from peptide design based on human LL-37.


Anticancer peptides Antimicrobial peptides Antiviral peptides Cathelicidins LL-37 Peptide design 



This study is supported by the NIAID/NIH grant R01 AI105147 and AI128230 to GW. This chapter reflects the point of view of the authors and may not represent the funding agency.


  1. Agerberth B, Gunne H, Odeberg J, Kogner P, Boman HG, Gudmundsson GH (1995) FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc Natl Acad Sci U S A 92(1):195–199PubMedPubMedCentralGoogle Scholar
  2. Alagarasu K, Patil PS, Shil P, Seervi M, Kakade MB, Tillu H, Salunke A (2017) In-vitro effect of human cathelicidin antimicrobial peptide LL-37 on dengue virus type 2. Peptides 92:23–30PubMedGoogle Scholar
  3. Bals R, Weiner DJ, Meegalla RL, Wilson JM (1999) Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model. J Clin Invest 103:1113–1117PubMedPubMedCentralGoogle Scholar
  4. Bergman P, Walter-Jallow L, Broliden K, Agerberth B, Söderlund J (2007) The antimicrobial peptide LL-37 inhibits HIV-1 replication. Curr HIV Res 5(4):410–415PubMedGoogle Scholar
  5. Boman HG (2003) Antibacterial peptides: basic facts and emerging concepts. J Intern Med 254(3):197–215PubMedGoogle Scholar
  6. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48:1–12PubMedGoogle Scholar
  7. Braff MH, Hawkins MA, Di Nardo A, Lopez-Garcia B, Howell MD, Wong C, Lin K, Streib JE, Dorschner R, Leung DY, Gallo RL (2005) Structure-function relationships among human cathelicidin peptides: disso ciation of antimicrobial properties from host immunostimulatory activities. J Immunol 174(7):4271–4278PubMedGoogle Scholar
  8. Caiaffa KS, Massunari L, Danelon M, Abuna GF, Bedran TBL, Santos-Filho NA, Spolidorio DMP, Vizoto NL, Cilli EM, Duque C (2017) KR-12-a5 is a non-cytotoxic agent with potent antimicrobial effects against oral pathogens. Biofouling 33(10):807–818PubMedGoogle Scholar
  9. Cassin ME, Ford AJ, Orbach SM, Saverot SE, Rajagopalan P (2016) The design of antimicrobial LL37-modified collagen-hyaluronic acid detachable multilayers. Acta Biomater 40:119–129PubMedGoogle Scholar
  10. Chen G, Zhou M, Chen S, Lv G, Yao J (2009) Nanolayer biofilm coated on magnetic nanoparticles by using a dielectric barrier discharge glow plasma fluidized bed for immobilizing an antimicrobial peptide. Nanotechnology 20(46):465706PubMedGoogle Scholar
  11. Cheng M, Ho S, Yoo JH, Tran DH, Bakirtzi K, Su B, Tran DH, Kubota Y, Ichikawa R, Koon HW (2014) Cathelicidin suppresses colon cancer development by inhibition of cancer associated fibroblasts. Clin Exp Gastroenterol 8:13–29PubMedPubMedCentralGoogle Scholar
  12. Choi KY, Chow LN, Mookherjee N (2012) Cationic host defence peptides: multifaceted role in immune modulation and inflammation. J Innate Immun 4(4):361–370PubMedGoogle Scholar
  13. Comune M, Rai A, Chereddy KK, Pinto S, Aday S, Ferreira AF, Zonari A, Blersch J, Cunha R, Rodrigues R, Lerma J, Simões PN, Préat V, Ferreira L (2017) Antimicrobial peptide-gold nanoscale therapeutic formulation with high skin regenerative potential. J Control Release 262:58–71PubMedGoogle Scholar
  14. Cowland JB, Johnsen AH, Borregaard N (1995) hCAP-18, a cathelin/probactenecin-like protein of human neutrophil specific granules. FEBS Lett 368(1):173–176PubMedGoogle Scholar
  15. Crack LR, Jones L, Malavige GN, Patel V, Ogg GS (2012) Human antimicrobial peptides LL-37 and human β-defensin-2 reduce viral replication in keratinocytes infected with varicella zoster virus. Clin Exp Dermatol 37(5):534–543PubMedGoogle Scholar
  16. Currie SM, Findlay EG, McHugh BJ, Mackellar A, Man T, Macmillan D, Wang H, Fitch PM, Schwarze J, Davidson DJ (2013) The human cathelicidin LL-37 has antiviral activity against respiratory syncytial virus. PLoS One 8(8):e73659PubMedPubMedCentralGoogle Scholar
  17. Currie SM, Gwyer Findlay E, McFarlane AJ, Fitch PM, Böttcher B, Colegrave N, Paras A, Jozwik A, Chiu C, Schwarze J, Davidson DJ (2016) Cathelicidins have direct antiviral activity against respiratory syncytial virus in vitro and protective function in vivo in mice and humans. J Immunol 196(6):2699–2710PubMedPubMedCentralGoogle Scholar
  18. da Silva BR, Conrado AJS, Pereira AL, Evaristo FFV, Arruda FVS, Vasconcelos MA, Lorenzón EN, Cilli EM, Teixeira EH (2017) Antibacterial activity of a novel antimicrobial peptide [W7]KR12-KAEK derived from KR-12 against Streptococcus mutans planktonic cells and biofilms. Biofouling 33(10):835–846PubMedGoogle Scholar
  19. de Breij A, Riool M, Kwakman PH, de Boer L, Cordfunke RA, Drijfhout JW, Cohen O, Emanuel N, Zaat SA, Nibbering PH, Moriarty TF (2016) Prevention of Staphylococcus aureus biomaterial-associated infections using a polymer-lipid coating containing the antimicrobial peptide OP-145. J Control Release 222:1–8PubMedGoogle Scholar
  20. de Breij A, Riool M, Cordfunke RA, Malanovic N, de Boer L, Koning RI, Ravensbergen E, Franken M, van der Heijde T, Boekema BK, Kwakman PHS, Kamp N, El Ghalbzouri A, Lohner K, Zaat SAJ, Drijfhout JW, Nibbering PH. (2018) Sci Transl Med. 10(423). pii: eaan4044Google Scholar
  21. den Hertog AL, van Marle J, Veerman EC, Valentijn-Benz M, Nazmi K, Kalay H, Grün CH, Van’t Hof W, Bolscher JG, Nieuw Amerongen AV (2006) The human cathelicidin peptide LL-37 and truncated variants induce segregation of lipids and proteins in the plasma membrane of Candida albicans. Biol Chem 387(10–11):1495–1502Google Scholar
  22. Dürr UH, Sudheendra US, Ramamoorthy A (2006) Membrane fragmentation by an amyloidogenic fragment of human islet amyloid polypeptide detected by solid-state NMR spectroscopy of membrane nanotubes. Biochim Biophys Acta 1768(9):2026–2029Google Scholar
  23. Dutta D, Kumar N, D P Willcox M (2016) Antimicrobial activity of four cationic peptides immobilised to poly-hydroxyethylmethacrylate. Biofouling 32(4):429–438PubMedGoogle Scholar
  24. Epand RF, Wang G, Berno B, Epand RM (2009) Lipid segregation explains selective toxicity of a series of fragments derived from the human cathelicidin LL-37. Antimicrob Agents Chemother 53(9):3705–3714PubMedPubMedCentralGoogle Scholar
  25. Findlay F, Pohl J, Svoboda P, Shakamuri P, McLean K, Inglis NF, Proudfoot L, Barlow PG (2017) Carbon nanoparticles inhibit the antimicrobial activities of the human cathelicidin LL-37 through structural alteration. J Immunol 199(7):2483–2490PubMedPubMedCentralGoogle Scholar
  26. Frohm M, Agerberth B, Ahangari G, Stâhle-Bäckdahl M, Lidén S, Wigzell H, Gudmundsson GH (1997) The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 272(24):15258–15263PubMedGoogle Scholar
  27. Gabriel M, Nazmi K, Veerman EC, Nieuw Amerongen AV, Zentner A (2006) Preparation of LL-37-grafted titanium surfaces with bactericidal activity. Bioconjug Chem 17(2):548–550PubMedGoogle Scholar
  28. Grönberg A, Mahlapuu M, Ståhle M, Whately-Smith C, Rollman O (2014) Treatment with LL-37 is safe and effective in enhancing healing of hard-to-heal venous leg ulcers: a randomized, placebo-controlled clinical trial. Wound Repair Regen 22:613–621PubMedGoogle Scholar
  29. Gudmundsson GH, Agerberth B, Odeberg J, Bergman T, Olsson B, Salcedo R (1996) The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur J Biochem 238:325–332Google Scholar
  30. Gunasekera S, Muhammad T, Strömstedt AA, Rosengren KJ, Göransson U (2018) Alanine and lysine scans of the LL-37-derived peptide fragment KR-12 reveal key residues for antimicrobial activity. Chembiochem 19(9):931–939PubMedGoogle Scholar
  31. Gustafsson A, Olin AI, Ljunggren L (2010) LPS interactions with immobilized and soluble antimicrobial peptides. Scand J Clin Lab Invest 70(3):194–200PubMedGoogle Scholar
  32. Harcourt JL, McDonald M, Svoboda P, Pohl J, Tatti K, Haynes LM (2016) Human cathelicidin, LL-37, inhibits respiratory syncytial virus infection in polarized airway epithelial cells. BMC Res Notes 9:11PubMedPubMedCentralGoogle Scholar
  33. Hase K, Murakami M, Iimura M, Cole SP, Horibe Y, Ohtake T, Obonyo M, Gallo RL, Eckmann L, Kagnoff MF (2003) Expression of LL-37 by human gastric epithelial cells as a potential host defense mechanism against Helicobacter pylori. Gastroenterology 125(6):1613–1625PubMedGoogle Scholar
  34. He M, Zhang H, Li Y, Wang G, Tang B, Zhao J, Huang Y, Zheng J (2018) Cathelicidin-derived antimicrobial peptides inhibit Zika virus through direct inactivation and interferon pathway. Front Immunol 9:722PubMedPubMedCentralGoogle Scholar
  35. Henzler Wildman KA, Lee DK, Ramamoorthy A (2003) Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry 42(21):6545–6558PubMedGoogle Scholar
  36. Howell MD, Jones JF, Kisich KO, Streib JE, Gallo RL, Leung DY (2004) Selective killing of vaccinia virus by LL-37: implications for eczema vaccinatum. J Immunol 172(3):1763–1767PubMedGoogle Scholar
  37. Jacob B, Park IS, Bang JK, Shin SY (2013) Short KR-12 analogs designed from human cathelicidin LL-37 possessing both antimicrobial and antiendotoxic activities without mammalian cell toxicity. J Pept Sci 19(11):700–707PubMedGoogle Scholar
  38. Jayaram LN, Chen JY (2015) Antimicrobial peptides: possible anti-infective agents. Peptides 72:88–94Google Scholar
  39. Jiang W, Sunkara LT, Zeng X, Deng Z, Myers SM, Zhang G (2013) Differential regulation of human cathelicidin LL-37 by free fatty acids and their analogs. Peptides 50:129–138PubMedGoogle Scholar
  40. Kahlenberg JM, Kaplan MJ (2013) Little peptide, big effects: the role of LL-37 in inflammation and autoimmune disease. J Immunol 191(10):4895–4901PubMedGoogle Scholar
  41. Kanthawong S, Bolscher JG, Veerman EC, van Marle J, Nazmi K, Wongratanacheewin S, Taweechaisupapong S (2010) Antimicrobial activities of LL-37 and its truncated variants against Burkholderia thailandensis. Int J Antimicrob Agents 36(5):447–452PubMedGoogle Scholar
  42. Kay LE, Ikura M, Tschudin R, Bax A (2011) Three-dimensional triple-resonance NMR Spectroscopy of isotopically enriched proteins. 1990. J Magn Reson 213(2):423–441PubMedGoogle Scholar
  43. Keifer PA, Peterkofsky A, Wang G (2004) Effects of detergent alkyl chain length and chemical structure on the properties of a micelle-bound bacterial membrane targeting peptide. Anal Biochem 331:33–39PubMedGoogle Scholar
  44. Klevens RM, Morrison MA, Nadle J et al (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298:1763–1771PubMedGoogle Scholar
  45. Koziel J, Bryzek D, Sroka A, Maresz K, Glowczyk I, Bielecka E, Kantyka T, Pyrć K, Svoboda P, Pohl J, Potempa J (2014) Citrullination alters immunomodulatory function of LL-37 essential for prevention of endotoxin-induced sepsis. J Immunol 192(11):5363–5372PubMedPubMedCentralGoogle Scholar
  46. Kuroda K, Fukuda T, Yoneyama H, Katayama M, Isogai H, Okumura K, Isogai E (2012) Anti-proliferative effect of an analogue of the LL-37 peptide in the colon cancer derived cell line HCT116 p53+/+ and p53−/−. Oncol Rep 28(3):829–834PubMedGoogle Scholar
  47. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132PubMedGoogle Scholar
  48. Larrick JW, Hirata M, Balint RF, Lee J, Zhong J, Wright SC (1995) Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun 63(4):1291–1297PubMedPubMedCentralGoogle Scholar
  49. Lee PH, Ohtake T, Zaiou M, Murakami M, Rudisill JA, Lin KH, Gallo RL (2005) Expression of an additional cathelicidin antimicrobial peptide protects against bacterial skin infection. Proc Natl Acad Sci U S A 102:3750–3755PubMedPubMedCentralGoogle Scholar
  50. Lee CC, Sun Y, Qian S, Huang HW (2011) Transmembrane pores formed by human antimicrobial peptide LL-37. Biophys J 100(7):1688–1696PubMedPubMedCentralGoogle Scholar
  51. Lehrer RI, Lu W (2012) α-Defensins in human innate immunity. Immunol Rev 245(1):84–112PubMedGoogle Scholar
  52. Li J, Perez Perez GI. (2018) Is there a role for the non-helicobacter pylori bacteria in the risk of developing gastric cancer? Int J Mol Sci 19(5) pii: E1353Google Scholar
  53. Li X, Li Y, Han H, Miller DW, Wang G (2006a) Solution structures of human LL-37 fragments and NMR-based identification of a minimal membrane-targeting antimicrobial and anticancer region. J Am Chem Soc 128:5776–5785PubMedGoogle Scholar
  54. Li Y, Li X, Wang G (2006b) Cloning, expression, isotope labeling, and purification of human antimicrobial peptide LL-37 in Escherichia coli for NMR studies. Protein Expr Purif 47:498–505PubMedGoogle Scholar
  55. Li Y, Li X, Li H, Lockridge O, Wang G (2007) A novel method for purifying recombinant human host defense cathelicidin LL-37 by utilizing its inherent property of aggregation. Protein Expr Purif 54:157–165PubMedGoogle Scholar
  56. McArthur MA (2017) Zika virus: Recent advances toward the development of vaccines and therapeutics. Viruses 9(6) pii: E143Google Scholar
  57. Meister M, Lemaitre B, Hoffmann JA (1997) Antimicrobial peptide defense in Drosophila. BioEssays 19(11):1019–1026PubMedGoogle Scholar
  58. Mishra B, Wang G (2012) Ab initio design of potent anti-MRSA peptides based on database filtering technology. J Am Chem Soc 134:12426–12429PubMedPubMedCentralGoogle Scholar
  59. Mishra B, Wang G (2017) Individual and combined effects of engineered peptides and antibiotics on the Pseudomonas aeruginosa biofilms. Pharmaceuticals 10(3):58PubMedCentralGoogle Scholar
  60. Mishra B, Epand RF, Epand RM, Wang G (2013) Structural location determines functional roles of the basic amino acids of KR-12, the smallest antimicrobial peptide from human cathelicidin LL-37. RSC Adv 3:19560–19571Google Scholar
  61. Mishra B, Golla R, Lau K, Lushnikova T, Wang G (2016) Anti-Staphylococcal biofilm effects of human cathelicidin peptides. ACS Med Chem Lett 7:117–121PubMedGoogle Scholar
  62. Mishra B, Lushnikova T, Golla RM, Wang X, Wang G (2017a) Design and surface immobilization of short anti-biofilm peptides. Acta Biomater 49:316–328PubMedGoogle Scholar
  63. Mishra B, Reiling S, Zarena D, Wang G (2017b) Host defense antimicrobial peptide as antibiotics: design and application strategies. Curr Opin Chem Biol 38:87–96PubMedPubMedCentralGoogle Scholar
  64. Mishra B, Wang X, Lushnikova T, Zhang Y, Golla RM, Narayana JL, Wang C, McGuire TR, Wang G (2018) Antibacterial, antifungal, anticancer activities and structural bioinformatics analysis of six naturally occurring temporins. Peptides 106:9–20PubMedGoogle Scholar
  65. Murakami M, Lopez-Garcia B, Braff M, Dorschner RA, Gallo RL (2004) Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. J Immunol 172:3070–3077PubMedGoogle Scholar
  66. Murakami M, Kameda K, Tsumoto H, Tsuda T, Masuda K, Utsunomiya R, Mori H, Miura Y, Sayama K (2017) TLN-58, an additional hCAP18 processing form, found in the lesion vesicle of palmoplantar pustulosis in the skin. J Invest Dermatol 137(2):322–331PubMedGoogle Scholar
  67. Nan YH, Bang JK, Jacob B, Park IS, Shin SY (2012) Prokaryotic selectivity and LPS-neutralizing activity of short antimicrobial peptides designed from the human antimicrobial peptide LL-37. Peptides 35(2):239–247PubMedGoogle Scholar
  68. Nell MJ, Tjabringa GS, Wafelman AR, Verrijk R, Hiemstra PS, Drijfhout JW, Grote JJ (2006) Development of novel LL-37 derived antimicrobial peptides with LPS and LTA neutralizing and antimicrobial activities for therapeutic application. Peptides 27(4):649–660PubMedGoogle Scholar
  69. Nie B, Ao H, Chen C, Xie K, Zhou J, Long T, Tang T, Yue B (2016) Covalent immobilization of KR-12 peptide onto a titanium surface for decreasing infection and promoting osteogenic differentiation. RSC Adv 6(52):46733–46743Google Scholar
  70. Niemirowicz K, Durnaś B, Tokajuk G, Piktel E, Michalak G, Gu X, Kułakowska A, Savage PB, Bucki R (2017) Formulation and candidacidal activity of magnetic nanoparticles coated with cathelicidin LL-37 and ceragenin CSA-13. Sci Rep 7(1):4610PubMedPubMedCentralGoogle Scholar
  71. Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, Pestonjamasp V, Piraino J, Huttner K, Gallo RL (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414(6862):454–457PubMedGoogle Scholar
  72. Ogawa Y, Kawamura T, Matsuzawa T, Aoki R, Gee P, Yamashita A, Moriishi K, Yamasaki K, Koyanagi Y, Blauvelt A, Shimada S (2013) Antimicrobial peptide LL-37 produced by HSV-2-infected keratinocytes enhances HIV infection of Langerhans cells. Cell Host Microbe 13(1):77–86PubMedGoogle Scholar
  73. Ohsaki Y, Gazdar AF, Chen HC, Johnson BE (1992) Antitumor activity of magainin analogues against human lung cancer cell lines. Cancer Res 52(13):3534–3538PubMedGoogle Scholar
  74. Oren Z, Lerman JC, Gudmundsson GH, Agerberth B, Shai Y (1999) Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J 341(Pt 3):501–513PubMedPubMedCentralGoogle Scholar
  75. Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE (2008) Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 76(9):4176–4182PubMedPubMedCentralGoogle Scholar
  76. Overhage PE, McHugh B, Gwyer Findlay E, Mackellar A, Mackenzie KJ, Gallo RL, Govan JR, Simpson AJ, Davidson DJ (2014) Cathelicidin host defence peptide augments clearance of pulmonary Pseudomonas aeruginosa infection by its influence on neutrophil function in vivo. PLoS One 9:e99029Google Scholar
  77. Peschel A, Sahl HG (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4:529–536Google Scholar
  78. Pütsep K, Carlsson G, Boman HG, Andersson M (2002) Deficiency of antibacterial peptides in patients with morbus kostmann: an observation study. Lancet 360:1144–1149Google Scholar
  79. Rajasekaran G, Kim EY, Shin SY (2017) LL-37-derived membrane-active FK-13 analogs possessing cell selectivity, anti-biofilm activity and synergy with chloramphenicol and anti-inflammatory activity. Biochim Biophys Acta 1859(5):722–733Google Scholar
  80. Rapala-Kozik M, Bochenska O, Zawrotniak M, Wolak N, Trebacz G, Gogol M, Ostrowska D, Aoki W, Ueda M, Kozik A (2015) Inactivation of the antifungal and immunomodulatory properties of human cathelicidin LL-37 by aspartic proteases produced by the pathogenic yeast Candida albicans. Infect Immun 83(6):2518–2530PubMedPubMedCentralGoogle Scholar
  81. Ren SX, Cheng AS, To KF, Tong JH, Li MS, Shen J, Wong CC, Zhang L, Chan RL, Wang XJ, Ng SS, Chiu LC, Marquez VE, Gallo RL, Chan FK, Yu J, Sung JJ, Wu WK, Cho CH (2012) Host immune defense peptide LL-37 activates caspase-independent apoptosis and suppresses colon cancer. Cancer Res 72(24):6512–6523PubMedPubMedCentralGoogle Scholar
  82. Ren SX, Shen J, Cheng AS, Lu L, Chan RL, Li ZJ, Wang XJ, Wong CC, Zhang L, Ng SS, Chan FL, Chan FK, Yu J, Sung JJ, Wu WK, Cho CH (2013) FK-16 derived from the anticancer peptide LL-37 induces caspase-independent apoptosis and autophagic cell death in colon cancer cells. PLoS One 8(5):e63641PubMedPubMedCentralGoogle Scholar
  83. Ron-Doitch S, Sawodny B, Kühbacher A, David MMN, Samanta A, Phopase J, Burger-Kentischer A, Griffith M, Golomb G, Rupp S (2016) Reduced cytotoxicity and enhanced bioactivity of cationic antimicrobial peptides liposomes in cell cultures and 3D epidermis model against HSV. J Control Release 229:163–171PubMedGoogle Scholar
  84. Saar-Dover R, Bitler A, Nezer R, Shmuel-Galia L, Firon A, Shimoni E, Trieu-Cuot P, Shai Y (2012) D-alanylation of lipoteichoic acids confers resistance to cationic peptides in group B streptococcus by increasing the cell wall density. PLoS Pathog 8:e1002891PubMedPubMedCentralGoogle Scholar
  85. Santos CM, Kumar A, Kolar SS, Contreras-Caceres R, McDermott A, Cai C (2013) Immobilization of antimicrobial peptide IG-25 onto fluoropolymers via fluorous interactions and click chemistry. ACS Appl Mater Interfaces 5(24):12789–12793PubMedPubMedCentralGoogle Scholar
  86. Saporito P, Vang Mouritzen M, Løbner-Olesen A, Jenssen H (2018) LL-37 fragments have antimicrobial activity against Staphylococcus epidermidis biofilms and wound healing potential in HaCaT cell line. J Pept Sci 8:e3080Google Scholar
  87. Schauber J, Iffland K, Frisch S, Kudlich T, Schmausser B, Eck M, Menzel T, Gostner A, Lührs H, Scheppach W (2004) Histone-deacetylase inhibitors induce the cathelicidin LL-37 in gastrointestinal cells. Mol Immunol 41(9):847–854PubMedGoogle Scholar
  88. Schögler A, Muster RJ, Kieninger E, Casaulta C, Tapparel C, Jung A, Moeller A, Geiser T, Regamey N, Alves MP (2016) Vitamin D represses rhinovirus replication in cystic fibrosis cells by inducing LL-37. Eur Respir J 47:520–530PubMedGoogle Scholar
  89. Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE (2002) The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol 169(7):3883–3891PubMedGoogle Scholar
  90. Sevcsik E, Pabst G, Richter W, Danner S, Amenitsch H, Lohner K (2008) Interaction of LL-37 with model membrane systems of different complexity: influence of the lipid matrix. Biophys J 94:4688–4699PubMedPubMedCentralGoogle Scholar
  91. Shah NR, Hancock RE, Fernandez RC (2014) Bordetella pertussis lipid A glucosamine modification confers resistance to cationic antimicrobial peptides and increases resistance to outer membrane perturbation. Antimicrob Agents Chemother 58(8):4931–4934PubMedPubMedCentralGoogle Scholar
  92. Sieprawska-Lupa M, Mydel P, Krawczyk K, Wójcik K, Puklo M, Lupa B, Suder P, Silberring J, Reed M, Pohl J, Shafer W, McAleese F, Foster T, Travis J, Potempa J (2004) Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 48(12):4673–4679PubMedPubMedCentralGoogle Scholar
  93. Sigurdardottir T, Andersson P, Davoudi M, Malmsten M, Schmidtchen A, Bodelsson M (2006) In silico identification and biological evaluation of antimicrobial peptides based on human cathelicidin LL-37. Antimicrob Agents Chemother 50(9):2983–2989PubMedPubMedCentralGoogle Scholar
  94. Singh D, Vaughan R, Kao CC (2014) LL-37 peptide enhancement of signal transduction by Toll-like receptor 3 is regulated by pH: identification of a peptide antagonist of LL-37. J Biol Chem 289(40):27614–27624PubMedPubMedCentralGoogle Scholar
  95. Skerlavaj B, Gennaro R, Bagella L, Merluzzi L, Risso A, Zanetti M (1996) Biological characterization of two novel cathelicidin-derived peptides and identification of structural requirements for their antimicrobial and cell lytic activities. J Biol Chem 271(45):28375–28381PubMedPubMedCentralGoogle Scholar
  96. Sol A, Ginesin O, Chaushu S, Karra L, Coppenhagen-Glazer S, Ginsburg I, Bachrach G (2013) LL-37 opsonizes and inhibits biofilm formation of Aggregatibacter actinomycetemcomitans at subbactericidal concentrations. Infect Immun 81:3577–3585PubMedPubMedCentralGoogle Scholar
  97. Song DW, Kim SH, Kim HH, Lee KH, Ki CS, Park YH (2016) Multi-biofunction of antimicrobial peptide-immobilized silk fibroin nanofiber membrane: implications for wound healing. Acta Biomater 39:146–155PubMedGoogle Scholar
  98. Sorensen OE, Follin P, Johnsen AH, Calafat J, Tjabringa GS, Hiemstra PS et al (2001) Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97(12):3951–3959PubMedGoogle Scholar
  99. Sørensen OE, Gram L, Johnsen AH, Andersson E, Bangsbøll S, Tjabringa GS, Hiemstra PS, Malm J, Egesten A, Borregaard N (2003) Processing of seminal plasma hCAP-18 to ALL-38 by gastricsin: a novel mechanism of generating antimicrobial peptides in vagina. J Biol Chem 278(31):28540–28546PubMedGoogle Scholar
  100. Sousa FH, Casanova V, Findlay F, Stevens C, Svoboda P, Pohl J, Proudfoot L, Barlow PG (2017) Cathelicidins display conserved direct antiviral activity towards rhinovirus. Peptides 95:76–83PubMedPubMedCentralGoogle Scholar
  101. Spencer JD, Schwaderer AL, Becknell B, Watson J, Hains DS (2014) The innate immune response during urinary tract infection and pyelonephritis. Pediatr Nephrol 29(7):1139–1149PubMedGoogle Scholar
  102. Sung CM, Kim HC, Cho YB, Shin SY, Jang CH (2017) Evaluating the ototoxicity of an anti-MRSA peptide KR-12-a2. Braz J Otorhinolaryngol pii: S1808-8694(17)30078–2Google Scholar
  103. Suzuki K, Murakami T, Kuwahara-Arai K, Tamura H, Hiramatsu K, Nagaoka I (2011) Human anti-microbial cathelicidin peptide LL-37 suppresses the LPS-induced apoptosis of endothelial cells. Int Immunol 23(3):185–193PubMedGoogle Scholar
  104. Suzuki K, Murakami T, Hu Z, Tamura H, Kuwahara-Arai K, Iba T, Nagaoka I (2016) Human host defense cathelicidin peptide LL-37 enhances the lipopolysaccharide uptake by liver sinusoidal endothelial cells without cell activation. J Immunol 196(3):1338–1347PubMedGoogle Scholar
  105. Tack BF, Sawai MV, Kearney WR, Robertson AD, Sherman MA, Wang W, Hong T, Boo LM, Wu H, Waring AJ, Lehrer RI (2002) SMAP-29 has two LPS-binding sites and a central hinge. Eur J Biochem 269(4):1181–1189PubMedGoogle Scholar
  106. Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11(4):443–451PubMedPubMedCentralGoogle Scholar
  107. Tanphaichitr N, Srakaew N, Alonzi R, Kiattiburut W, Kongmanas K, Zhi R, Li W, Baker M, Wang G, Hickling D (2016) Potential use of antimicrobial peptides as vaginal spermicides/microbicides. Pharmaceuticals 9:13PubMedCentralGoogle Scholar
  108. Tian M, Zhao DY, Wang HW (2011) Studies on the core functional region of antimicrobial peptide LL-37 for inhibition of RSV replication. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 25(5):355–357. In ChinesePubMedGoogle Scholar
  109. Tripathi S, Tecle T, Verma A, Crouch E, White M, Hartshorn KL (2013) The human cathelicidin LL-37 inhibits influenza A viruses through a mechanism distinct from that of surfactant protein D or defensins. J Gen Virol 94(Pt 1):40–49PubMedPubMedCentralGoogle Scholar
  110. Tripathi S, Verma A, Kim EJ, White MR, Hartshorn KL (2014) LL-37 modulates human neutrophil responses to influenza A virus. J Leukoc Biol 96(5):931–938PubMedPubMedCentralGoogle Scholar
  111. Tripathi S, Wang G, White M, Rynkiewicz M, Seaton B, Hartshorn K (2015a) Identifying the critical domain of LL-37 involved in mediating neutrophil activation in the presence of influenza virus: functional and structural analysis. PLoS One 10(8):e0133454PubMedPubMedCentralGoogle Scholar
  112. Tripathi S, Wang G, White M, Qi L, Taubenberger J, Hartshorn KL (2015b) Antiviral activity of the human cathelicidin, LL-37, and derived peptides on seasonal and pandemic influenza A viruses. PLoS One 10:e0124706PubMedPubMedCentralGoogle Scholar
  113. Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI (1998) Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother 42(9):2206–2214PubMedPubMedCentralGoogle Scholar
  114. Uchio E, Inoue H, Kadonosono K (2013) Anti-adenoviral effects of human cationic antimicrobial protein-18/LL-37, an antimicrobial peptide, by quantitative polymerase chain reaction. Korean J Ophthalmol 27(3):199–203PubMedPubMedCentralGoogle Scholar
  115. van der Does AM, Bergman P, Agerberth B, Lindbom L (2012) Induction of the human cathelicidin LL-37 as a novel treatment against bacterial infections. J Leukoc Biol 92(4):735–742PubMedGoogle Scholar
  116. Vandamme D, Landuyt B, Luyten W, Schoofs L (2012) A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol 280(1):22–35PubMedGoogle Scholar
  117. Velarde JJ, Ashbaugh M, Wessels MR (2014) The human antimicrobial peptide LL-37 binds directly to CsrS, a sensor histidine kinase of group A Streptococcus, to activate expression of virulence factors. J Biol Chem 289(52):36315–36324PubMedPubMedCentralGoogle Scholar
  118. Wang G (2006) Structural biology of antimicrobial peptides by NMR spectroscopy. Curr Org Chem 10:569–581Google Scholar
  119. Wang G (2007) Determination of solution structure and lipid micelle location of an engineered membrane peptide by using one NMR experiment and one sample. Biochim Biophys Acta 1768:3271–3281PubMedGoogle Scholar
  120. Wang G (2008) Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J Biol Chem 283:32637–32643PubMedGoogle Scholar
  121. Wang G (2010) Structure, dynamics and mapping of membrane-binding residues of micelle-bound antimicrobial peptides by natural abundance 13C NMR spectroscopy. Biochim Biophys Acta 1798:114–121PubMedGoogle Scholar
  122. Wang G (2012) Natural antimicrobial peptides as promising anti-HIV candidates. Curr Top Peptide Protein Res 13:93–110Google Scholar
  123. Wang G (2014) Human antimicrobial peptides and proteins. Pharmaceuticals 7:545–594PubMedPubMedCentralGoogle Scholar
  124. Wang G (2017) In: Wang G (ed) Antimicrobial peptides. CABI, UK, pp 1–19. and 169–187Google Scholar
  125. Wang Z, Wang G (2004) APD: the antimicrobial peptide database. Nucleic Acids Res 32:D590–D592PubMedPubMedCentralGoogle Scholar
  126. Wang G, Keifer PA, Peterkofsky A (2004) Short-chain diacyl phosphatidylglycerols: which one to choose for NMR structural determination of a membrane-associated peptide from Escherichia coli? Spectroscopy 18:257–264Google Scholar
  127. Wang G, Waston K, Buckheit R Jr (2008) Anti-human immunodeficiency virus type 1 (HIV-1) activities of antimicrobial peptides derived from human and bovine cathelicidins. Antimicrob Agents Chemother 52:3438–3440PubMedPubMedCentralGoogle Scholar
  128. Wang G, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37:D933–D937PubMedGoogle Scholar
  129. Wang G, Elliott M, Cogen AL, Ezell EL, Gallo RL, Hancock REW (2012a) Structure, dynamics, antimicrobial and immune modulatory activities of human LL-23 and its single residue variants mutated based on homologous primate cathelicidins. Biochemistry 51:653–664PubMedPubMedCentralGoogle Scholar
  130. Wang G, Epand RF, Mishra B, Lushnikova T, Thomas VC, Bayles KW, Epand R (2012b) Decoding the functional roles of cationic side chains of the major antimicrobial region of human cathelicidin LL-37. Antimicrob Agents Chemother 56:845–856PubMedPubMedCentralGoogle Scholar
  131. Wang G, Hanke ML, Mishra B, Lushnikova T, Heim CE, Chittezham Thomas V, Bayles KW, Kielian T (2014a) Transformation of human cathelicidin LL-37 into selective, stable, and potent antimicrobial compounds. ACS Chem Biol 9:1997–2002PubMedPubMedCentralGoogle Scholar
  132. Wang G, Mishra B, Epand RF, Epand RM (2014b) High-quality 3D Structure shine light on antibacterial, anti-biofilm and antiviral activities of human cathelicidin LL-37 and its fragments. Biochim Biophys Acta 1838:2160–2172PubMedPubMedCentralGoogle Scholar
  133. Wang G, Mishra B, Lau K, Lushnikova T, Golla R, Wang X (2015) Antimicrobial peptides in 2014. Pharmaceuticals 8:123–150PubMedPubMedCentralGoogle Scholar
  134. Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44:D1087–D1093Google Scholar
  135. Wang X, Junior JCB, Mishra B, Lushnikova T, Epand RM, Wang G (2017) Arginine-lysine positional swap of the LL-37 peptides reveals evolutional advantages of the native sequence and leads to bacterial probes. Biochim Biophys Acta 1859:1350–1361PubMedCentralGoogle Scholar
  136. Wang X, Mishra B, Lushinikova T, Narayana JL, Wang G (2018) Amino acid composition determines peptide activity spectrum and hot spot-based design of merecidin. Adv Biosyst 2:1700259PubMedPubMedCentralGoogle Scholar
  137. Wong JH, Legowska A, Rolka K, Ng TB, Hui M, Cho CH, Lam WW, Au SW, Gu OW, Wan DC (2011) Effects of cathelicidin and its fragments on three key enzymes of HIV-1. Peptides 32(6):1117–1122PubMedGoogle Scholar
  138. Wu WK, Sung JJ, To KF, Yu L, Li HT, Li ZJ, Chu KM, Yu J, Cho CH (2010a) The host defense peptide LL-37 activates the tumor-suppressing bone morphogenetic protein signaling via inhibition of proteasome in gastric cancer cells. J Cell Physiol 223(1):178–186PubMedGoogle Scholar
  139. Wu WK, Wang G, Coffelt SB, Betancourt AM, Lee CW, Fan D, Wu K, Yu J, Sung JJ, Cho CH (2010b) Emerging roles of the host defense peptide LL-37 in human cancer and its potential therapeutic applications. Int J Cancer 127(8):1741–1747PubMedPubMedCentralGoogle Scholar
  140. Yasin B, Pang M, Turner JS, Cho Y, Dinh NN, Waring AJ, Lehrer RI, Wagar EA (2000) Evaluation of the inactivation of infectious Herpes simplex virus by host-defense peptides. Eur J Clin Microbiol Infect Dis 19(3):187–194PubMedGoogle Scholar
  141. Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A 84(15):5449–5453PubMedPubMedCentralGoogle Scholar
  142. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395Google Scholar
  143. Zhang LJ, Guerrero-Juarez CF, Hata T, Bapat SP, Ramos R, Plikus MV, Gallo RL (2015) Innate immunity. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science 347:67–71PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Guangshun Wang
    • 1
    Email author
  • Jayaram Lakshmaiah Narayana
    • 1
  • Biswajit Mishra
    • 1
  • Yingxia Zhang
    • 1
  • Fangyu Wang
    • 1
  • Chunfeng Wang
    • 1
  • D. Zarena
    • 1
  • Tamara Lushnikova
    • 1
  • Xiuqing Wang
    • 1
  1. 1.Department of Pathology and Microbiology, College of MedicineUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations