Skip to main content

Age-Related Changes in the Human Retina: A Role for Oxidative Stress

  • Chapter
  • First Online:
Models, Molecules and Mechanisms in Biogerontology
  • 470 Accesses

Abstract

The human retina undergoes subtle, age-related changes with aging. The changes are obvious in most layers and especially in photoreceptor cells. Examinations of postmortem donor retinas (35–94 years) by light and electron microscopy revealed significant structural alterations of the components of photoreceptor outer and inner segments. Immunohistochemical localization with biomarkers of oxidative stress showed an age-dependent intensification of oxidative stress; both lipid peroxidation and protein nitration occurred predominantly in aging photoreceptors, with the former restricted to photoreceptor outer segments and the latter is predominant in their inner segments. Besides, lipid peroxidation is a problem for Müller cells of the aged retina. Antioxidant support by way of upregulation of antioxidant enzymes is not robust enough to counteract the oxidative stress. The mitochondrial superoxide dismutase-2 shows a clear upregulation; other enzymes, such as glutathione peroxidase-1 and glutathione S-transferase, show a decrease in expression with aging and this may be responsible, in part, for the age-related alterations as well as loss of neurons from the aging human retina. Mechanisms for increased antioxidant support, via both exogenous and endogenous routes, seem an important area of future investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal P, Nag TC, Wadhwa S (2007) Age-related decrease in rod bipolar cell density of the human retina. An immunohistochemical study. J Biosci 32:893–898

    Article  Google Scholar 

  2. Ahmad H, Singh SV, Medh RD, Ansari GAS, Kurosky A, Awasthi YC (1988) Differential expression of α, μ, and π classes of isozymes of glutathione S-transferase in bovine lens, cornea, and retina. Arch Biochem Biophys 266:416–426

    Article  CAS  PubMed  Google Scholar 

  3. Anderson DH, Mullins RF, Hageman GS, Johnson LV (2002) A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol 134:411–431

    Article  CAS  PubMed  Google Scholar 

  4. Awasthi YC, Yang Y, Tiwari NK, Patrick B, Sharma A, Li A, Awasthi S (2004) Regulation of 4-hydroxynonenal-mediated signaling by glutathione S-transferases. Free Radic Biol Med 37:607–619

    Article  CAS  PubMed  Google Scholar 

  5. Balaszi AG, Rootman J, Drance SM, Schulzer M, Douglas GR (1984) The effect of age on the nerve fibre population of the human optic nerve. Am J Ophthalmol 97:760–766

    Article  Google Scholar 

  6. Barron MJ, Johnson MA, Andrews RM, Clarke MP, Griffiths PG, Bristow E, He LP, Durham S, Turnbull DM (2001) Mitochondrial abnormalities in aging macular photoreceptors. Invest Ophthalmol Vis Sci 42:3016–3022

    CAS  PubMed  Google Scholar 

  7. Beatty S, Koh H, Phil M, Henson D, Boulton M (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45:115–134

    Article  CAS  PubMed  Google Scholar 

  8. Bernstein PS, Khachik F, Carvalho LS, Muir GJ, Zhao DY, Katz NB (2001) Identification and quantitation of carotenoids and their metabolites in the tissues of the human eye. Exp Eye Res 72:215–223

    Article  CAS  PubMed  Google Scholar 

  9. Bhosale P, Larson AJ, Frederick JM, Southwick K, Thulin CD, Bernstein PS, Sybil AB (2004) Identification and characterization of a Pi isoform of glutathione S-transferase (GSTP1) as a zeaxanthin-binding protein in the macula of the human eye. J Biol Chem 279:49447–49454

    Article  CAS  PubMed  Google Scholar 

  10. Bok D, Young RW (1979) Phagocytic properties of the retinal pigment epithelium. In: Marmor MF, Zinn KM (eds) The retinal pigment epithelium. Harvard University Press, Cambridge, MA, pp 148–174

    Google Scholar 

  11. Boulton M, Dayhaw-Barker P (2001) The role of the retinal pigment epithelium: topographical variation and ageing changes. Eye 15:384–389

    Article  CAS  PubMed  Google Scholar 

  12. Bonilha VL (2008) Age and disease-related structural changes in the retinal pigment epithelium. Clin Ophthalmol 2:413–423

    Article  PubMed  PubMed Central  Google Scholar 

  13. Borwein B (1981) The retinal receptors: a description. In: Enoch JM, Tobey FL Jr (eds) Vertebrate photoreceptor optics. Springer, Berlin, pp 11–81

    Chapter  Google Scholar 

  14. Bringmann A, Kohen L, Wolf S, Wiedemann P, Reichenbach A (2003) Age-related decrease of potassium currents in human retinal glial (Muller) cells. Can J Ophthalmol 38:464–468

    Article  PubMed  Google Scholar 

  15. Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A (2006) Müller cells in the healthy and diseased retina. Prog Ret Eye Res 25:397–424

    Article  CAS  Google Scholar 

  16. Bunt-Milam AH, Kalina RE, Pagon RA (1983) Clinical-ultrastructural study of a retinal dystrophy. Invest Ophthalmol Vis Sci 24:458–469

    CAS  PubMed  Google Scholar 

  17. Chen H, Lukas TJ, Du N, Suyeoka G, Neufeld AH (2009) Dysfunction of the retinal pigment epithelium with age: increased iron decreases phagocytosis and lysosomal activity. Invest Ophthalmol Vis Sci 50:1895–1902

    Article  PubMed  Google Scholar 

  18. Curcio CA, Drucker DN (1993) Retinal ganglion cells in Alzheimer’s disease and aging. Ann Neurol 33:248–257

    Article  CAS  PubMed  Google Scholar 

  19. Curcio CA, Millican CL (1999) Basal linear deposit and large drusen are specific for early age-related maculopathy. Arch Ophthalmol 117:329–339

    Article  CAS  PubMed  Google Scholar 

  20. Curcio CA, Millican CL, Allen KA, Kalina RE (1993) Ageing of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina. Invest Ophthalmol Vis Sci 34:3278–3296

    CAS  PubMed  Google Scholar 

  21. Curcio CA, Medeiros NE, Millican CL (1996) Photoreceptor loss in age-related macular degeneration. Invest Ophthalmol Vis Sci 37:1236–1249

    CAS  PubMed  Google Scholar 

  22. Curcio CA, Presley JB, Malek G, Medeiros NE, Avery DV, Kruth HS (2005) Esterified and unesterified cholesterol in drusen and basal deposits of eyes with age-related maculopathy. Exp Eye Res 81:731–741

    Article  CAS  PubMed  Google Scholar 

  23. Curcio CA, Messinger JD, Sloan KR, Mitra A, McGwin G, Spaide RF (2011) Human chorioretinal layer thicknesses measured in macula-wide, high-resolution histologic sections. Invest Ophthalmol Vis Sci 52:3943–3954

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dick O, tom Dieck S, Altrock WD, Ammermöller J, Weiler R, Garner CC, Gundelfinger ED, Brandstätter JH (2003) The presynaptic active zone protein Bassoon is essential for photoreceptor ribbon synapse formation in the retina. Neuron 37:775–786

    Article  CAS  PubMed  Google Scholar 

  25. Del Priore LV, Kuo YH, Tezel TH (2002) Age-related changes in human RPE cell density and apoptosis proportion in situ. Invest Ophthalmol Vis Sci 43:3312–3318

    PubMed  Google Scholar 

  26. De La Paz MA, Anderson RE (1992) Regional and age-dependent variation in susceptibility of the human retina to lipid peroxidation. Invest Ophthalmol Vis Sci 33:3497–3499

    Google Scholar 

  27. De La Paz MA, Zhang J, Fridovich I (1996) Antioxidant enzymes of the human retina: effect of age on enzyme activity of macula and periphery. Curr Eye Res 15:273–278

    Article  Google Scholar 

  28. Dorey CK, Wu G, Ebenstein D, Garsad A, Weiter JJ (1989) Cell loss in the aging retina: relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci 30:1691–1699

    CAS  PubMed  Google Scholar 

  29. Dowling JE, Gibbons JR (1961) The effect of vitamin A deficiency on the fine structure of the retina. In: Smelser GK (ed) The structure of the eye. Academic, New York, pp 85–99

    Google Scholar 

  30. Drasdo N, Millican CL, Katholi CR, Curcio CA (2007) The length of Henle fibers in the human retina and a model of ganglion receptive field density in the visual field. Vis Res 47:2901–2911

    Article  PubMed  Google Scholar 

  31. Eckmiller MS (2004) Defective cone photoreceptor cytoskeleton, alignment, feedback, and energetics can lead to energy depletion in macular degeneration. Prog Ret Eye Res 23:495–522

    Article  Google Scholar 

  32. Eliasieh K, Liets LC, Chalupa LM (2007) Cellular reorganization in the human retina during normal aging. Invest Ophthalmol Vis Sci 48:2824–2830

    Article  PubMed  Google Scholar 

  33. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    Article  CAS  Google Scholar 

  34. Farkas T, Sylvester V, Archer D (1971) The ultrastructure of drusen. Am J Ophthalmol 71:1196–1205

    Article  CAS  PubMed  Google Scholar 

  35. Feeney L (1978) Lipofuscin and melanin of human retinal pigment epithelium: fluorescence, enzyme cytochemical and ultrastructural studies. Invest Ophthalmol Vis Sci 17:583–601

    CAS  PubMed  Google Scholar 

  36. Feeney-Burns L, Berman ER, Rothman H (1980) Lipofuscin of human retinal pigment epithelium. Am J Ophthalmol 90:783–791

    Article  CAS  PubMed  Google Scholar 

  37. Feeney-Burns L, Burns RP, Gao CL (1990) Age-related macular changes in humans over 90 years old. Am J Ophthalmol 109:265–278

    Article  CAS  PubMed  Google Scholar 

  38. Feher J, Kovacs I, Artico M, Cavallotti C, Papale A, Balacco Gabrieli C (2006) Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol Aging 27:983–993

    Article  CAS  PubMed  Google Scholar 

  39. Fukuda A, Nakamura Y, Ohigashi H, Osawa T, Uchida K (1997) Cellular response to the redox active lipid peroxidation products: induction of glutathione S transferase P by 4-hydroxy-2-nonenal. Biochem Biophys Res Commun 236:505–509

    Article  CAS  PubMed  Google Scholar 

  40. Gao H, Hollyfield JG (1992) Aging of the human retina. Invest Ophthalmol Vis Sci 33:1–17

    CAS  PubMed  Google Scholar 

  41. Gartner S, Henkind P (1981) Aging and degeneration of the human macula: 1. Outer nuclear and photoreceptors. Br J Ophthalmol 65:23–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Green WR (1999) Histopathology of age-related macular degeneration. Mol Vis 5:27–36

    CAS  PubMed  Google Scholar 

  43. Handelman GJ, Dratz EA (1986) The role of antioxidants in retina and retinal pigment epithelium and the nature of peroxidant induced damage. Adv Free Rad Biol Med 2:1089

    Article  Google Scholar 

  44. Handelman GJ, Dratz EA, Reay CC, van Kuijk JG (1988) Carotenoids in the human macula and whole retina. Invest Ophthalmol Vis Sci 29:850–855

    CAS  PubMed  Google Scholar 

  45. Harman A, Abrahams B, Moore S, Hoskins R (2000) Neuronal density in the human retinal ganglion cell layer from 16–77 years. Anat Rec 260:124–131

    Article  CAS  PubMed  Google Scholar 

  46. Hogan MJ, Alvarado JA, Weddell JE (1971) Histology of the human eye. Saunders, Philadelphia

    Google Scholar 

  47. Hollyfield JG, Bonilha VL, Rayborn ME, Yang X, Shadrach KG, Lu L, Ufret RL, Salomon RG, Perez VL (2008) Oxidative damage-induced inflammation initiates age-related macular degeneration. Nat Med 14:194–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Iwasaki M, Inomata H (1988) Lipofuscin granules in human photoreceptor cells. Invest Ophthalmol Vis Sci 29:671–679

    CAS  PubMed  Google Scholar 

  49. Jackson GR, Owsley C, Curcio CA (2002) Photoreceptor degeneration and dysfunction in aging and age-related maculopathy. Ageing Res Rev 1:381–396

    Article  PubMed  Google Scholar 

  50. Jha KA, Nag TC, Kumar V, Kumar P, Kumar B, Wadhwa S, Roy TS (2015) Differential expression of AQP1 and AQP4 in avascular chick retina exposed to moderate light of variable photoperiods. Neurochem Res 40:2153–2166

    Article  CAS  PubMed  Google Scholar 

  51. Jha KA, Nag TC, Wadhwa S, Roy TS (2017) Immunohistochemical localization of GFAP and glutamate regulatory proteins in chick retina and their levels of expressions in altered photoperiods. Cell Mol Neurobiol 37:1029–1042

    Article  PubMed  CAS  Google Scholar 

  52. Kapphahn RJ, Giwa BM, Berg KM, Roehrich H, Feng X, Olsen TW, Ferrington DA (2006) Retinal proteins modified by 4-hydroxynonenal: identification of molecular targets. Exp Eye Res 83:165–175

    Article  CAS  PubMed  Google Scholar 

  53. Kliffen M, van der Schaft TL, Mooy CM, de Jong PT (1997) Morphologic changes in age-related maculopathy. Microsc Res Tech 36:106–122

    Article  CAS  PubMed  Google Scholar 

  54. Komeima K, Rogers BS, Lu LL, Campochiaro PA (2006) Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proc Natl Acad Sci U S A 103:11300–11305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hayes KC (1974) Retinal degeneration in monkeys induced by deficiencies of vitamin E or A. Investig Ophthalmol 13:499–510

    CAS  Google Scholar 

  56. Kuwabara T, Gorn RA (1968) Retinal damage by visible light: an electron microscopic study. Arch Ophthalmol 79:69–78

    Article  CAS  PubMed  Google Scholar 

  57. Loane E, Kelliher C, Beatty S, Nolan JM (2008) The rationale and evidence base for a protective role of macular pigment in age-related maculopathy. Br J Ophthalmol 92:1163–1168

    Article  CAS  PubMed  Google Scholar 

  58. Loffler KU, Lee WR (1986) Basal linear deposit in the human macula. Graefes Arch Clin Exp Ophthalmol 224:493–501

    Article  CAS  PubMed  Google Scholar 

  59. Maeda A, Crabb JW, Palczewski K (2005) Microsomal glutathione S-transferase 1 in the retinal pigment epithelium: protection against oxidative stress and a potential role in aging. Biochemistry 44:480–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Malone PE, Hernandez MR (2007) 4-Hydroxynonenal, a product of oxidative stress, leads to an antioxidant response in optic nerve head astrocytes. Exp Eye Res 84:444–454

    Article  CAS  PubMed  Google Scholar 

  61. Marshall J, Grindle J, Ansell PL, Borwein B (1979) Convolution in human rods: an ageing process. Br J Ophthalmol 63:181–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nag TC, Wadhwa S (2009) Observations on the synaptic ribbon morphology in retinas of two human subjects at autopsy. Ann Anat 191:556–562

    Article  PubMed  Google Scholar 

  63. Nag TC, Wadhwa S, Chaudhury S (2006) The occurrence of cone inclusions in the ageing human retina and their possible effect upon vision: an electron microscope study. Brain Res Bull 71:224–232

    Article  PubMed  Google Scholar 

  64. Nag TC, Wadhwa S, Alladi PA, Sanyal T (2011) Localisation of 4-hydroxy 2 nonenal immunoreactivity in ageing human retinal Müller cells. Ann Anat 193:205–210

    Article  CAS  PubMed  Google Scholar 

  65. Nag TC, Wadhwa S (2012) Ultrastructure of the human retina in aging and various pathological states. Micron 43:759–781

    Article  PubMed  Google Scholar 

  66. Nag TC, Wadhwa S (2016) Immunolocalisation pattern of complex I–V in ageing human retina: correlation with mitochondrial ultrastructure. Mitochondrion 31:20–32

    Article  CAS  PubMed  Google Scholar 

  67. Nag TC, Kumar P, Wadhwa S (2017) Age related distribution of 4-hydroxy 2-nonenal immunoreactivity in human retina. Exp Eye Res 165:125–135

    Article  CAS  PubMed  Google Scholar 

  68. Nag TC, Kathpalia P, Gorla S, Wadhwa S (2019) Localization of nitro-tyrosine immunoreactivity in human retina. Ann Anat 223:8–18

    Article  PubMed  Google Scholar 

  69. Nishikawa S, Tamai M (2001) Muller cells in the human foveal region. Curr Eye Res 22:34–41

    Article  CAS  PubMed  Google Scholar 

  70. Neuville JM, Bronson-Castain K, Bearse MA Jr, Ng JS, Harrison WW, Schneck ME, Adams AJ (2009) OCT reveals regional differences in macular thickness with age. Optom Vis Sci 86:E810–E816

    Article  PubMed  PubMed Central  Google Scholar 

  71. Nolan JM, Stack J, O’ Donovan O, Loane E, Beatty S (2007) Risk factors for age-related maculopathy are associated with a relative lack of macular pigment. Exp Eye Res 84:61–74

    Article  CAS  PubMed  Google Scholar 

  72. O’Steen WK, Shear CR, Anderson KV (1972) Retinal damage after prolonged exposure to visible light. A light and electron microscopic study. Am J Anat 134:5–21

    Article  PubMed  Google Scholar 

  73. Paasche G, Huster D, Reichenbach A (1998) The glutathione content of retinal Muller (glial) cells: the effects of aging and of application of free-radical scavengers. Ophthalmic Res 30:351–360

    Article  CAS  PubMed  Google Scholar 

  74. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pow DV, Crook DK (1995) Immunocytochemical evidence for the presence of high levels of reduced glutathione in radial glial cells and horizontal cells in the rabbit retina. Neurosci Lett 193:25–28

    Article  CAS  PubMed  Google Scholar 

  76. Pow DV, Sullivan RK (2007) Nuclear kinesis, neurite sprouting and abnormal axonal projections of cone photoreceptors in the aged and AMD-afflicted human retina. Exp Eye Res 84:850–857

    Article  CAS  PubMed  Google Scholar 

  77. Rapp LM, Maple SS, Choi JH (2000) Lutein and zeaxanthin concentrations in rod outer segment membranes from perifoveal and peripheral human retina. Invest Ophthalmol Vis Sci 41:1200–1209

    CAS  PubMed  Google Scholar 

  78. Rauen T, Taylor WR, Kuhlbrodt K, Wiessner M (1998) High affinity glutamate transporters in the rat retina: a major role of the glial glutamate transporter GLAST-1 in transmitter clearance. Cell Tissue Res 291:19–31

    Article  CAS  PubMed  Google Scholar 

  79. Reichelt W, Stabel-Burow J, Pannicke T, Weichert H, Heinemann U (1997) The glutathione level of retinal Muller glial cells is dependent on the high-affinity sodium-dependent uptake of glutamate. Neuroscience 77:1213–1224

    Article  CAS  PubMed  Google Scholar 

  80. Rodieck RW (1973) The vertebrate retina. Principles of structure and function. Freeman and Co, San Francisco

    Google Scholar 

  81. Rogers BS, Symons RCA, Komeima K, Shen J, Xiao W, Swaim ME, Gong YY, Kachi S, Campochiaro PA (2007) Differential sensitivity of cones to iron-mediated oxidative damage. Invest Ophthalmol Vis Sci 48:438–445

    Article  PubMed  Google Scholar 

  82. Sarks SH, Arnold JJ, Killingsworth MC, Sarks JP (1999) Early drusen formation in the normal and aging eye and their relation to age related maculopathy: a clinicopathological study. Br J Ophthalmol 83:358–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sarna T, Burke JM, Korytowski W, Rózanowska M, Skumatz CM, Zareba A, Zareba M (2003) Loss of melanin from human RPE with aging: possible role of melanin photooxidation. Exp Eye Res 76:89–98

    Article  CAS  PubMed  Google Scholar 

  84. Schmitz F, Königstorfer A, Südhof TC (2000) RIBEYE, a component of synaptic ribbons: a protein’s journey through evolution provides insights into synaptic ribbon function. Neuron 28:857–872

    Article  CAS  PubMed  Google Scholar 

  85. Seddon JM, Ajani UA, Sperduto RD, Hiller R, Blair N, Burton TC, Farber MD, Gragoudas ES, Haller J, Miller DT, Yannuzzi LA, Willett W (1994) Dietary carotenoids, vitamins A, C, E and advanced age related macular degeneration: a multicenter study. JAMA 242:1413–1420

    Article  Google Scholar 

  86. Shelley EJ, Madigan MC, Natoli R, Penfold PL, Provis JM (2009) Cone degeneration in aging and age-related macular degeneration. Arch Ophthalmol 127:483–492

    Article  PubMed  Google Scholar 

  87. Shen JK, Dong A, Hackett SF, Bell WR, Green WR, Campochiaro PA (2007) Oxidative damage in age-related macular degeneration. Histol Histopathol 22:1301–1308

    CAS  PubMed  Google Scholar 

  88. Singhal SS, Awasthi S, Srivastava SK, Zimniak P, Ansari NH, Awasthi YC (1995) Novel human ocular glutathione S-transferases with high activity toward 4-hydroxynonenal. Invest Ophthalmol Vis Sci 36:142–150

    CAS  PubMed  Google Scholar 

  89. Singhal SS, Godley BF, Chandra A, Pandya U, Jin GF, Saini MK, Awasthi S, Awasthi YC (1999) Induction of glutathione S-transferase hGST 5.8 is an early response to oxidative stress in RPE cells. Invest Ophthalmol Vis Sci 40:2652–2659

    CAS  PubMed  Google Scholar 

  90. Snodderly DM (1995) Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am J Clin Nutr 62:1448S–1461S

    Article  CAS  PubMed  Google Scholar 

  91. Sommerburg OG, Siems WG, Hurst JS, Lewis JW, Kliger DS, van Kuijk FJ (1999) Lutein and zeaxanthin are associated with photoreceptors in the human retina. Curr Eye Res 19:491–495

    Article  CAS  PubMed  Google Scholar 

  92. Sparrow JR, Boulton M (2005) RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res 80:595–606

    Article  CAS  PubMed  Google Scholar 

  93. Stone J, van Driel D, Valter K, Rees S, Provis J (2008) The locations of mitochondria in mammalian photoreceptors: relation to retinal vasculature. Brain Res 1189:58–69

    Article  CAS  PubMed  Google Scholar 

  94. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881

    Article  CAS  PubMed  Google Scholar 

  95. Sullivan RK, Woldemussie E, Pow DV (2007) Dendritic and synaptic plasticity of neurons in the human age-related macular degeneration retina. Invest Ophthalmol Vis Sci 48:2782–2791

    Article  PubMed  Google Scholar 

  96. Tanito M, Haniu H, Elliott MH, Singh AK, Matsumoto H, Anderson RE (2006) Identification of 4-hydroxynonenal-modified retinal proteins induced by photooxidative stress prior to retinal degeneration. Free Radic Biol Med 41:1847–1859

    Article  CAS  PubMed  Google Scholar 

  97. Tucker GS (1986) Refractile bodies in the inner segments of cones in the aging human retina. Invest Ophthalmol Vis Sci 27:708–715

    CAS  PubMed  Google Scholar 

  98. Uchida K (2003) 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res 42:318–343

    Article  CAS  PubMed  Google Scholar 

  99. Uchida K, Stadtman ER (1992) Modification of histidine residues in proteins by reaction with 4-hydroxynonenal. Proc Natl Acad Sci U S A 89:4544–4548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. van de Kraats J, Kanis MJ, Genders SW, van Norren D (2008) Lutein and zeaxanthin measured separately in the living human retina with fundus reflectometry. Invest Ophthalmol Vis Sci 49:5568–5573

    Article  PubMed  Google Scholar 

  101. van der Schaft TL, de Bruijn WC, Mooy CM, Ketelaars DA, de Jong PT (1992) Is basal laminar deposit unique for age-related macular degeneration? Arch Ophthalmol 10:15–16

    Google Scholar 

  102. van der Schaft TL, de Bruijn WC, Mooy CM, de Jong PT (1993) Basal laminar deposit in the aging peripheral human retina. Graefes Arch Clin Exp Ophthalmol 231:470–475

    Article  PubMed  Google Scholar 

  103. Wiegand RD, Giusto NM, Rapp LM, Anderson RE (1983) Evidence for rod outer segment lipid peroxidation following constant illumination of the rat retina. Invest Ophthalmol Vis Sci 24:1433–1435

    CAS  PubMed  Google Scholar 

  104. Winkler BS, Boulton ME, Gottsch JD, Sternberg P (1999) Oxidative damage and age-related macular degeneration. Mol Vis 5:32

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Weiter JJ, Delori FC, Eing GL, Fitch KA (1986) Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes. Invest Ophthalmol Vis Sci 27:l45

    Google Scholar 

  106. Wang L, Clark ME, Crossman DK, Kojima K, Messinger JD, Mobley JA, Curcio CA (2010) Abundant lipid and protein components of drusen. PLoS One 5:e10329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Young RW, Bok D (1969) Participation of the retinal pigment epithelium in the rod outer segment renewal process. J Cell Biol 42:392–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Thanks are due to Prof. Radhika Tandon, the Officer-In-Charge, National Eye Bank, AIIMS, New Delhi, for providing with the donor human eyes. The TEM work was done at SAIF-New Delhi (DST). The work was supported by grants from the Department of Biotechnology, Government of India, New Delhi (BT/PR10195/BRB/10/589/2007), and Institute research grant, AIIMS, New Delhi (F.1-6-Para-Med/Acad, 2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapas Chandra Nag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nag, T.C. (2019). Age-Related Changes in the Human Retina: A Role for Oxidative Stress. In: Rath, P. (eds) Models, Molecules and Mechanisms in Biogerontology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3585-3_7

Download citation

Publish with us

Policies and ethics