Skip to main content

Association Between Ageing and REM Sleep Loss: Noradrenaline Acting as a Mediator

  • Chapter
  • First Online:
Models, Molecules and Mechanisms in Biogerontology

Abstract

Rapid eye movement sleep (REMS) constitutes a distinct and unique stage within sleep, which is essential for the maintenance of normal physiological processes. It is maximum in the babies, reduces with increased age, and is expressed least in the old age. REMS loss is associated with various pathophysiological disorders; expressions of several of the symptoms are common with those associated with ageing. As many of those common symptoms are induced by elevated levels of noradrenaline in the brain, we propose that the ageing-associated symptoms could be due to REMS loss and consequent increase in noradrenaline in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

aDMRs:

Ageing-associated differentially methylated regions

GABA:

Gamma-aminobutyric acid

LC:

Locus coeruleus

NA:

Noradrenaline

NREMS:

Non-REMS

PD:

Parkinson’s disease

REMS:

Rapid eye movement sleep

REMSD:

REMS deprivation

ROS:

Reactive oxygen species

SD:

Sleep deprivation

References

  1. Schmidt MH (2014) The energy allocation function of sleep: a unifying theory of sleep, torpor, and continuous wakefulness. Neurosci Biobehav Rev 47:122–153

    Article  PubMed  Google Scholar 

  2. Adam K, Oswald I (1977) Sleep is for tissue restoration. J R Coll Physicians Lond 11(4):376–388

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Maquet P (2001) The role of sleep in learning and memory. Science 294(5544):1048–1052

    Article  CAS  PubMed  Google Scholar 

  4. Stickgold R (2005) Sleep-dependent memory consolidation. Nature 437(7063):1272–1278

    Article  CAS  PubMed  Google Scholar 

  5. Wilson MA, McNaughton BL (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265(5172):676–679

    Article  CAS  PubMed  Google Scholar 

  6. Mallick BN, Singh A (2011) REM sleep loss increases brain excitability: role of noradrenaline and its mechanism of action. Sleep Med Rev 15(3):165–178

    Article  PubMed  Google Scholar 

  7. Tononi G, Cirelli C (2003) Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull 62(2):143–150

    Article  PubMed  Google Scholar 

  8. Ohayon MM, Carskadon MA, Guilleminault C, Vitiello MV (2004) Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep 27(7):1255–1273

    Article  PubMed  Google Scholar 

  9. Austad SN (2001) Concepts and theories of aging. In: Masoro EJ, Austad SN (eds) Handbook of the biology of aging. Academic, San Diego, pp 3–22

    Google Scholar 

  10. Nigam Y, Knight J, Bhattacharya S, Bayer A (2012) Physiological changes associated with aging and immobility. J Aging Res 2012:468469

    Article  PubMed  PubMed Central  Google Scholar 

  11. Farage MA, Miller KW, Elsner P, Maibach HI (2013) Characteristics of the aging skin. Adv Wound Care (New Rochelle) 2(1):5–10

    Article  Google Scholar 

  12. Johnson FB, Sinclair DA, Guarente L (1999) Molecular biology of aging. Cell 96(2):291–302

    Article  CAS  PubMed  Google Scholar 

  13. Edwards BA, O’Driscoll DM, Ali A, Jordan AS, Trinder J, Malhotra A (2010) Aging and sleep: physiology and pathophysiology. Semin Respir Crit Care Med 31(5):618–633

    Article  PubMed  PubMed Central  Google Scholar 

  14. Redline S, Kirchner HL, Quan SF, Gottlieb DJ, Kapur V, Newman A (2004) The effects of age, sex, ethnicity, and sleep-disordered breathing on sleep architecture. Arch Intern Med 164(4):406–418

    Article  PubMed  Google Scholar 

  15. Moraes W, Piovezan R, Poyares D, Bittencourt LR, Santos-Silva R, Tufik S (2014) Effects of aging on sleep structure throughout adulthood: a population-based study. Sleep Med 15(4):401–409

    Article  PubMed  Google Scholar 

  16. Carskadon MA, Brown ED, Dement WC (1982) Sleep fragmentation in the elderly: relationship to daytime sleep tendency. Neurobiol Aging 3(4):321–327

    Article  CAS  PubMed  Google Scholar 

  17. Bliwise DL, Foley DJ, Vitiello MV, Ansari FP, Ancoli-Israel S, Walsh JK (2009) Nocturia and disturbed sleep in the elderly. Sleep Med 10(5):540–548

    Article  PubMed  Google Scholar 

  18. Huang YL, Liu RY, Wang QS, Van Someren EJ, Xu H, Zhou JN (2002) Age-associated difference in circadian sleep-wake and rest-activity rhythms. Physiol Behav 76(4–5):597–603

    Article  CAS  PubMed  Google Scholar 

  19. Park YM, Matsumoto K, Seo YJ, Kang MJ, Nagashima H (2002) Effects of age and gender on sleep habits and sleep trouble for aged people. Biol Rhythm Res 33(1):39–51

    Article  Google Scholar 

  20. Zilli I, Ficca G, Salzarulo P (2009) Factors involved in sleep satisfaction in the elderly. Sleep Med 10(2):233–239

    Article  PubMed  Google Scholar 

  21. Vitiello MV (1997) Sleep disorders and aging: understanding the causes. J Gerontol A Biol Sci Med Sci 52(4):M189–M191

    Article  CAS  PubMed  Google Scholar 

  22. Espiritu JR (2008) Aging-related sleep changes. Clin Geriatr Med 24(1):1–14

    Article  PubMed  Google Scholar 

  23. Wauquier A, van Sweden B, Lagaay AM, Kemp B, Kamphuisen HA (1992) Ambulatory monitoring of sleep-wakefulness patterns in healthy elderly males and females (greater than 88 years): the “Senieur” protocol. J Am Geriatr Soc 40(2):109–114

    Article  CAS  PubMed  Google Scholar 

  24. Dijk DJ, Duffy JF, Riel E, Shanahan TL, Czeisler CA (1999) Ageing and the circadian and homeostatic regulation of human sleep during forced desynchrony of rest, melatonin and temperature rhythms. J Physiol 516 (. Pt 2:611–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Darchia N, Campbell IG, Feinberg I (2003) Rapid eye movement density is reduced in the normal elderly. Sleep 26(8):973–977

    Article  PubMed  Google Scholar 

  26. Murphy PJ, Rogers NL, Campbell SS (2000) Age differences in the spontaneous termination of sleep. J Sleep Res 9(1):27–34

    Article  CAS  PubMed  Google Scholar 

  27. Oh MM, Oliveira FA, Disterhoft JF (2010) Learning and aging related changes in intrinsic neuronal excitability. Front Aging Neurosci 2:1–10

    Google Scholar 

  28. Luszcz MA, Bryan J (1999) Toward understanding age-related memory loss in late adulthood. Gerontology 45(1):2–9

    Article  CAS  PubMed  Google Scholar 

  29. Park DC, Festini SB (2016) Theories of memory and aging: a look at the past and a glimpse of the future. J Gerontol B Psychol Sci Soc Sci 72:82–90

    Article  PubMed  PubMed Central  Google Scholar 

  30. Harada CN, Natelson Love MC, Triebel K (2013) Normal cognitive aging. Clin Geriatr Med 29(4):737–752

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gagnon JF, Petit D, Fantini ML, Rompre S, Gauthier S, Panisset M, Robillard A, Montplaisir J (2006) REM sleep behavior disorder and REM sleep without atonia in probable Alzheimer disease. Sleep 29(10):1321–1325

    Article  PubMed  Google Scholar 

  32. Friedman A (1980) Sleep pattern in Parkinson’s disease. Acta Med Pol 21(2):193–199

    CAS  PubMed  Google Scholar 

  33. Shimokata H, Kuzuya F (1993) Aging, basal metabolic rate, and nutrition. Nihon Ronen Igakkai Zasshi 30(7):572–576

    Article  CAS  PubMed  Google Scholar 

  34. St-Onge MP, Gallagher D (2010) Body composition changes with aging: the cause or the result of alterations in metabolic rate and macronutrient oxidation? Nutrition 26(2):152–155

    Article  CAS  PubMed  Google Scholar 

  35. Veronica G, Esther RR (2012) Aging, metabolic syndrome and the heart. Aging Dis 3(3):269–279

    PubMed  PubMed Central  Google Scholar 

  36. Bonomini F, Rodella LF, Rezzani R (2015) Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis 6(2):109–120

    Article  PubMed  PubMed Central  Google Scholar 

  37. Monjan AA (2010) Perspective on sleep and aging. Front Neurol 1:1–9

    Article  Google Scholar 

  38. Spiegel K, Leproult R, L’Hermite-Baleriaux M, Copinschi G, Penev PD, Van Cauter E (2004) Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab 89(11):5762–5771

    Article  CAS  PubMed  Google Scholar 

  39. Schmid SM, Hallschmid M, Jauch-Chara K, Born J, Schultes B (2008) A single night of sleep deprivation increases ghrelin levels and feelings of hunger in normal-weight healthy men. J Sleep Res 17(3):331–334

    Article  PubMed  Google Scholar 

  40. Taheri S, Lin L, Austin D, Young T, Mignot E (2004) Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med 1(3):e62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Donga E, van Dijk M, van Dijk JG, Biermasz NR, Lammers GJ, van Kralingen KW, Corssmit EP, Romijn JA (2010) A single night of partial sleep deprivation induces insulin resistance in multiple metabolic pathways in healthy subjects. J Clin Endocrinol Metab 95(6):2963–2968

    Article  CAS  PubMed  Google Scholar 

  42. Gonzalez-Ortiz M, Martinez-Abundis E, Balcazar-Munoz BR, Pascoe-Gonzalez S (2000) Effect of sleep deprivation on insulin sensitivity and cortisol concentration in healthy subjects. Diabetes Nutr Metab 13(2):80–83

    CAS  PubMed  Google Scholar 

  43. Palma BD, Suchecki D, Catallani B, Tufik S (2007) Effect of sleep deprivation on the corticosterone secretion in an experimental model of autoimmune disease. Neuroimmunomodulation 14(2):72–77

    Article  CAS  PubMed  Google Scholar 

  44. Plyley MJ, Shephard RJ, Davis GM, Goode RC (1987) Sleep deprivation and cardiorespiratory function. Influence of intermittent submaximal exercise. Eur J Appl Physiol Occup Physiol 56(3):338–344

    Article  CAS  PubMed  Google Scholar 

  45. Song Q, Liu X, Zhou W, Wang X, Wu S (2016) Changes in sleep duration and risk of metabolic syndrome: the Kailuan prospective study. Sci Rep 6:36861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sharma S, Kavuru M (2010) Sleep and metabolism: an overview. Int J Endocrinol 2010:1–12

    Article  Google Scholar 

  47. Reeve A, Simcox E, Turnbull D (2014) Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Res Rev 14:19–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Driver JA, Logroscino G, Gaziano JM, Kurth T (2009) Incidence and remaining lifetime risk of Parkinson disease in advanced age. Neurology 72(5):432–438

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rodriguez M, Rodriguez-Sabate C, Morales I, Sanchez A, Sabate M (2015) Parkinson’s disease as a result of aging. Aging Cell 14(3):293–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Factor SA, McAlarney T, Sanchez-Ramos JR, Weiner WJ (1990) Sleep disorders and sleep effect in Parkinson’s disease. Mov Disord 5(4):280–285

    Article  CAS  PubMed  Google Scholar 

  51. Hurst JH, LeWitt PA, Burns RS, Foster NL, Lovenberg W (1985) CSF dopamine-beta-hydroxylase activity in Parkinson’s disease. Neurology 35(4):565–568

    Article  CAS  PubMed  Google Scholar 

  52. Greenfield JG, Bosanquet FD (1953) The brain-stem lesions in Parkinsonism. J Neurol Neurosurg Psychiatry 16(4):213–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pascoal TA, Mathotaarachchi S, Mohades S, Benedet AL, Chung CO, Shin M, Wang S, Beaudry T, Kang MS, Soucy JP, Labbe A, Gauthier S, Rosa-Neto P (2017) Amyloid-beta and hyperphosphorylated tau synergy drives metabolic decline in preclinical Alzheimer’s disease. Mol Psychiatry 22(2):306–311

    Article  CAS  PubMed  Google Scholar 

  54. van Moorsel D, Hansen J, Havekes B, Scheer FA, Jorgensen JA, Hoeks J, Schrauwen-Hinderling VB, Duez H, Lefebvre P, Schaper NC, Hesselink MK, Staels B, Schrauwen P (2016) Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity. Mol Metab 5(8):635–645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Christos GA (1993) Is Alzheimer’s disease related to a deficit or malfunction of rapid eye movement (REM) sleep? Med Hypotheses 41(5):435–439

    Article  CAS  PubMed  Google Scholar 

  56. Kundermann B, Thum A, Rocamora R, Haag A, Krieg JC, Hemmeter U (2011) Comparison of polysomnographic variables and their relationship to cognitive impairment in patients with Alzheimer’s disease and frontotemporal dementia. J Psychiatr Res 45(12):1585–1592

    Article  PubMed  Google Scholar 

  57. Bliwise DL (2004) Sleep disorders in Alzheimer’s disease and other dementias. Clin Cornerstone 6(Suppl 1A):S16–S28

    Article  PubMed  Google Scholar 

  58. Bondareff W, Mountjoy CQ, Roth M (1982) Loss of neurons of origin of the adrenergic projection to cerebral cortex (nucleus locus ceruleus) in senile dementia. Neurology 32(2):164–168

    Article  CAS  PubMed  Google Scholar 

  59. Zweig RM, Ross CA, Hedreen JC, Steele C, Cardillo JE, Whitehouse PJ, Folstein MF, Price DL (1989) Neuropathology of aminergic nuclei in Alzheimer’s disease. Prog Clin Biol Res 317:353–365

    CAS  PubMed  Google Scholar 

  60. Heneka MT, Nadrigny F, Regen T, Martinez-Hernandez A, Dumitrescu-Ozimek L, Terwel D, Jardanhazi-Kurutz D, Walter J, Kirchhoff F, Hanisch UK, Kummer MP (2010) Locus ceruleus controls Alzheimer’s disease pathology by modulating microglial functions through norepinephrine. Proc Natl Acad Sci U S A 107(13):6058–6063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Raskind MA, Peskind ER, Holmes C, Goldstein DS (1999) Patterns of cerebrospinal fluid catechols support increased central noradrenergic responsiveness in aging and Alzheimer’s disease. Biol Psychiatry 46(6):756–765

    Article  CAS  PubMed  Google Scholar 

  62. Wu D, Meydani SN (2008) Age-associated changes in immune and inflammatory responses: impact of vitamin E intervention. J Leukoc Biol 84(4):900–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Busse PJ, Mathur SK (2010) Age-related changes in immune function: effect on airway inflammation. J Allergy Clin Immunol 126(4):690–699. quiz 700-691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Montecino-Rodriguez E, Berent-Maoz B, Dorshkind K (2013) Causes, consequences, and reversal of immune system aging. J Clin Invest 123(3):958–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Krueger JM, Karnovsky ML (1987) Sleep and the immune response. Ann N Y Acad Sci 496:510–516

    Article  CAS  PubMed  Google Scholar 

  66. Moldofsky H, Lue FA, Davidson JR, Gorczynski R (1989) Effects of sleep deprivation on human immune functions. FASEB J 3(8):1972–1977

    Article  CAS  PubMed  Google Scholar 

  67. Opp MR (2009) Sleeping to fuel the immune system: mammalian sleep and resistance to parasites. BMC Evol Biol 9:8

    Article  PubMed  PubMed Central  Google Scholar 

  68. Redwine L, Hauger RL, Gillin JC, Irwin M (2000) Effects of sleep and sleep deprivation on interleukin-6, growth hormone, cortisol, and melatonin levels in humans. J Clin Endocrinol Metab 85(10):3597–3603

    CAS  PubMed  Google Scholar 

  69. Ruiz FS, Andersen ML, Martins RC, Zager A, Lopes JD, Tufik S (2012) Immune alterations after selective rapid eye movement or total sleep deprivation in healthy male volunteers. J Innate Immun 18(1):44–54

    Article  CAS  Google Scholar 

  70. Schiffelholz T, Lancel M (2001) Sleep changes induced by lipopolysaccharide in the rat are influenced by age. Am J Phys Regul Integr Comp Phys 280(2):R398–R403

    CAS  Google Scholar 

  71. Imeri L, Opp MR (2009) How (and why) the immune system makes us sleep. Nat Rev Neurosci 10(3):199–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Spiegel K, Leproult R, Van Cauter E (1999) Impact of sleep debt on metabolic and endocrine function. Lancet 354(9188):1435–1439

    Article  CAS  PubMed  Google Scholar 

  73. Irwin M, Thompson J, Miller C, Gillin JC, Ziegler M (1999) Effects of sleep and sleep deprivation on catecholamine and interleukin-2 levels in humans: clinical implications. J Clin Endocrinol Metab 84(6):1979–1985

    CAS  PubMed  Google Scholar 

  74. Yehuda S, Sredni B, Carasso RL, Kenigsbuch-Sredni D (2009) REM sleep deprivation in rats results in inflammation and interleukin-17 elevation. J Interf Cytokine Res 29(7):393–398

    Article  CAS  Google Scholar 

  75. Kang WS, Park HJ, Chung JH, Kim JW (2013) REM sleep deprivation increases the expression of interleukin genes in mice hypothalamus. Neurosci Lett 556:73–78

    Article  CAS  PubMed  Google Scholar 

  76. Mallick BN, Madan V, Faisal M (2005) Biochemical change. In: Kushida CA (ed) Sleep deprivation basic science, physiology and behavior, vol 192. Marcel Dekker, NewYork, pp 339–357

    Google Scholar 

  77. Somarajan BI, Khanday MA, Mallick BN (2016) Rapid eye movement sleep deprivation induces neuronal apoptosis by noradrenaline acting on Alpha1 adrenoceptor and by triggering mitochondrial intrinsic pathway. Front Neurol 7:25

    Article  PubMed  PubMed Central  Google Scholar 

  78. Biswas S, Mishra P, Mallick BN (2006) Increased apoptosis in rat brain after rapid eye movement sleep loss. Neuroscience 142(2):315–331

    Article  CAS  PubMed  Google Scholar 

  79. Ruiz FS, Andersen ML, Zager A, Martins RC, Tufik S (2007) Sleep deprivation reduces the lymphocyte count in a non-obese mouse model of type 1 diabetes mellitus. Braz J Med Biol Res 40(5):633–637

    Article  CAS  PubMed  Google Scholar 

  80. Jewett KA, Krueger JM (2012) Humoral sleep regulation; interleukin-1 and tumor necrosis factor. Vitam Horm 89:241–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zielinski MR, Kim Y, Karpova SA, McCarley RW, Strecker RE, Gerashchenko D (2014) Chronic sleep restriction elevates brain interleukin-1 beta and tumor necrosis factor-alpha and attenuates brain-derived neurotrophic factor expression. Neurosci Lett 580:27–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kohm AP, Sanders VM (2000) Norepinephrine: a messenger from the brain to the immune system. Immunol Today 21(11):539–542

    Article  CAS  PubMed  Google Scholar 

  83. Mortera P, Herculano-Houzel S (2012) Age-related neuronal loss in the rat brain starts at the end of adolescence. Front Neuroanat 6:1–9

    Google Scholar 

  84. Sjobeck M, Dahlen S, Englund E (1999) Neuronal loss in the brainstem and cerebellum part of the normal aging process? A morphometric study of the vermis cerebelli and inferior olivary nucleus. J Gerontol A Biol Sci Med Sci 54(9):B363–B368

    Article  CAS  PubMed  Google Scholar 

  85. Peters A (2009) The effects of normal aging on myelinated nerve fibers in monkey central nervous system. Front Neuroanat 3:1–10

    Article  CAS  Google Scholar 

  86. Morrison JH, Baxter MG (2012) The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci 13(4):240–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lee CK, Weindruch R, Prolla TA (2000) Gene-expression profile of the ageing brain in mice. Nat Genet 25(3):294–297

    Article  CAS  PubMed  Google Scholar 

  88. Jiang CH, Tsien JZ, Schultz PG, Hu Y (2001) The effects of aging on gene expression in the hypothalamus and cortex of mice. Proc Natl Acad Sci U S A 98(4):1930–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tumer N, LaRochelle JS, Yurekli M (1997) Exercise training reverses the age-related decline in tyrosine hydroxylase expression in rat hypothalamus. J Gerontol A Biol Sci Med Sci 52(5):B255–B259

    CAS  PubMed  Google Scholar 

  90. Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yankner BA (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429(6994):883–891

    Article  CAS  PubMed  Google Scholar 

  91. Glass D, Vinuela A, Davies MN, Ramasamy A, Parts L, Knowles D, Brown AA, Hedman AK, Small KS, Buil A, Grundberg E, Nica AC, Di Meglio P, Nestle FO, Ryten M, Consortium UKBE, Mu T, Durbin R, McCarthy MI, Deloukas P, Dermitzakis ET, Weale ME, Bataille V, Spector TD (2013) Gene expression changes with age in skin, adipose tissue, blood and brain. Genome Biol 14(7):R75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Berchtold NC, Cribbs DH, Coleman PD, Rogers J, Head E, Kim R, Beach T, Miller C, Troncoso J, Trojanowski JQ, Zielke HR, Cotman CW (2008) Gene expression changes in the course of normal brain aging are sexually dimorphic. Proc Natl Acad Sci U S A 105(40):15605–15610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lewis EJ, Tank AW, Weiner N, Chikaraishi DM (1983) Regulation of tyrosine hydroxylase mRNA by glucocorticoid and cyclic AMP in a rat pheochromocytoma cell line. Isolation of a cDNA clone for tyrosine hydroxylase mRNA. J Biol Chem 258(23):14632–14637

    CAS  PubMed  Google Scholar 

  94. Lewis EJ, Harrington CA, Chikaraishi DM (1987) Transcriptional regulation of the tyrosine hydroxylase gene by glucocorticoid and cyclic AMP. Proc Natl Acad Sci U S A 84(11):3550–3554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lewis-Tuffin LJ, Quinn PG, Chikaraishi DM (2004) Tyrosine hydroxylase transcription depends primarily on cAMP response element activity, regardless of the type of inducing stimulus. Mol Cell Neurosci 25(3):536–547

    Article  CAS  PubMed  Google Scholar 

  96. Kumer SC, Vrana KE (1996) Intricate regulation of tyrosine hydroxylase activity and gene expression. J Neurochem 67(2):443–462

    Article  CAS  PubMed  Google Scholar 

  97. Zhu QS, Chen K, Shih JC (1994) Bidirectional promoter of human Monoamine-Oxidase-a (Mao-a) controlled by transcription Factor Sp1. J Neurosci 14(12):7393–7403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cacabelos R, Torrellas C (2015) Epigenetics of aging and Alzheimer’s disease: implications for pharmacogenomics and drug response. Int J Mol Sci 16(12):30483–30543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sen P, Dang W, Donahue G, Dai J, Dorsey J, Cao X, Liu W, Cao K, Perry R, Lee JY, Wasko BM, Carr DT, He C, Robison B, Wagner J, Gregory BD, Kaeberlein M, Kennedy BK, Boeke JD, Berger SL (2015) H3K36 methylation promotes longevity by enhancing transcriptional fidelity. Genes Dev 29(13):1362–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ben-Avraham D (2015) Epigenetics of aging. Adv Exp Med Biol 847:179–191

    Article  CAS  PubMed  Google Scholar 

  101. Jones MJ, Goodman SJ, Kobor MS (2015) DNA methylation and healthy human aging. Aging Cell 14(6):924–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Konsoula Z, Barile FA (2012) Epigenetic histone acetylation and deacetylation mechanisms in experimental models of neurodegenerative disorders. J Pharmacol Toxicol Methods 66(3):215–220

    Article  CAS  PubMed  Google Scholar 

  103. Guo JU, Su Y, Zhong C, Ming GL, Song H (2011) Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145(3):423–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bhutani N, Burns DM, Blau HM (2011) DNA demethylation dynamics. Cell 146(6):866–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Siegmund KD, Connor CM, Campan M, Long TI, Weisenberger DJ, Biniszkiewicz D, Jaenisch R, Laird PW, Akbarian S (2007) DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS One 2(9):e895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Hernandez DG, Nalls MA, Gibbs JR, Arepalli S, van der Brug M, Chong S, Moore M, Longo DL, Cookson MR, Traynor BJ, Singleton AB (2011) Distinct DNA methylation changes highly correlated with chronological age in the human brain. Hum Mol Genet 20(6):1164–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Numata S, Ye TZ, Hyde TM, Guitart-Navarro X, Tao R, Wininger M, Colantuoni C, Weinberger DR, Kleinman JE, Lipska BK (2012) DNA Methylation signatures in development and aging of the human prefrontal cortex (vol 90, pg 260, 2012). Am J Hum Genet 91(4):765–765

    Article  CAS  PubMed Central  Google Scholar 

  108. Nakamura A, Kawakami K, Kametani F, Nakamoto H, Goto S (2010) Biological significance of protein modifications in aging and calorie restriction. Ann N Y Acad Sci 1197:33–39

    Article  CAS  PubMed  Google Scholar 

  109. Guarente L, Picard F (2005) Calorie restriction – the SIR2 connection. Cell 120(4):473–482

    Article  CAS  PubMed  Google Scholar 

  110. Dozmorov MG (2015) Polycomb repressive complex 2 epigenomic signature defines age-associated hypermethylation and gene expression changes. Epigenetics 10(6):484–495

    Article  PubMed  PubMed Central  Google Scholar 

  111. O’Sullivan RJ, Karlseder J (2012) The great unravelling: chromatin as a modulator of the aging process. Trends Biochem Sci 37(11):466–476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Tang B, Dean B, Thomas EA (2011) Disease- and age-related changes in histone acetylation at gene promoters in psychiatric disorders. Translation Psychiat 1:1–9

    Article  CAS  Google Scholar 

  113. Walker MP, LaFerla FM, Oddo SS, Brewer GJ (2013) Reversible epigenetic histone modifications and Bdnf expression in neurons with aging and from a mouse model of Alzheimer’s disease. AGE 35(3):519–531

    Article  CAS  PubMed  Google Scholar 

  114. Hargreaves DC, Horng T, Medzhitov R (2009) Control of inducible gene expression by signal-dependent transcriptional elongation. Cell 138(1):129–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fischer A, Sananbenesi F, Mungenast A, Tsai LH (2010) Targeting the correct HDAC(s) to treat cognitive disorders. Trends Pharmacol Sci 31(12):605–617

    Article  CAS  PubMed  Google Scholar 

  116. Yankner BA, Lu T, Loerch P (2008) The aging brain. Annu Rev Pathol 3:41–66

    Article  CAS  PubMed  Google Scholar 

  117. Tang B, Chang WL, Lanigan CM, Dean B, Sutcliffe JG, Thomas EA (2009) Normal human aging and early-stage schizophrenia share common molecular profiles. Aging Cell 8(3):339–342

    Article  CAS  PubMed  Google Scholar 

  118. Akbarian S, Beeri MS, Haroutunian V (2013) Epigenetic determinants of healthy and diseased brain aging and cognition. JAMA Neurol 70(6):711–718

    Article  PubMed  Google Scholar 

  119. Mehta R, Singh A, Bokkon I, Nath Mallick B (2016) REM sleep and its loss-associated epigenetic regulation with reference to noradrenaline in particular. Curr Neuropharmacol 14(1):28–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cirelli C, Tononi G (1999) Differences in brain gene expression between sleep and waking as revealed by mRNA differential display and cDNA microarray technology. J Sleep Res 8:44–52

    Article  PubMed  Google Scholar 

  121. Narwade SC, Mallick BN, Deobagkar DD (2017) Transcriptome analysis reveals altered expression of memory and neurotransmission associated genes in the REM sleep deprived rat brain. Front Mol Neurosci 10:1–13

    Article  CAS  Google Scholar 

  122. Arivazhagan P, Panneerselvam C (2002) Neurochemical changes related to ageing in the rat brain and the effect of DL-alpha-lipoic acid. Exp Gerontol 37(12):1489–1494

    Article  CAS  PubMed  Google Scholar 

  123. Miguez JM, Aldegunde M, Paz-Valinas L, Recio J, Sanchez-Barcelo E (1999) Selective changes in the contents of noradrenaline, dopamine and serotonin in rat brain areas during aging. J Neural Transm (Vienna) 106(11–12):1089–1098

    CAS  Google Scholar 

  124. Austin JH, Connole E, Kett D, Collins J (1978) Studies in aging of the brain. V. Reduced norepinephrine, dopamine, and cyclic AMP in rat brain with advancing age. AGE 1:121–124

    Article  CAS  Google Scholar 

  125. Seals DR, Esler MD (2000) Human ageing and the sympathoadrenal system. J Physiol 528.(Pt 3:407–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ferrier C, Jennings GL, Eisenhofer G, Lambert G, Cox HS, Kalff V, Kelly M, Esler MD (1993) Evidence for increased noradrenaline release from subcortical brain regions in essential hypertension. J Hypertens 11(11):1217–1227

    Article  CAS  PubMed  Google Scholar 

  127. Lambert GW, Kaye DM, Lefkovits J, Jennings GL, Turner AG, Cox HS, Esler MD (1995) Increased central nervous system monoamine neurotransmitter turnover and its association with sympathetic nervous activity in treated heart failure patients. Circulation 92(7):1813–1818

    Article  CAS  PubMed  Google Scholar 

  128. Ziegler MG, Lake CR, Kopin IJ (1976) Plasma noradrenaline increases with age. Nature 261(5558):333–335

    Article  CAS  PubMed  Google Scholar 

  129. Jones DH, Hamilton CA, Reid JL (1978) Plasma noradrenaline, age and blood pressure: a population study. Clin Sci Mol Med Suppl 4:73s–75s

    CAS  PubMed  Google Scholar 

  130. Goldstein DS, Lake CR, Chernow B, Ziegler MG, Coleman MD, Taylor AA, Mitchell JR, Kopin IJ, Keiser HR (1983) Age-dependence of hypertensive-normotensive differences in plasma norepinephrine. Hypertension 5(1):100–104

    Article  CAS  PubMed  Google Scholar 

  131. Hoffman WE, Seals C, Miletich DJ, Albrecht RF (1985) Plasma and myocardial catecholamine levels in young and aged rats during halothane anesthesia. Neurobiol Aging 6(2):117–120

    Article  CAS  PubMed  Google Scholar 

  132. Borton M, Docherty JR (1989) The effects of ageing on neuronal uptake of noradrenaline in the rat. Naunyn Schmiedeberg’s Arch Pharmacol 340(2):139–143

    Article  CAS  Google Scholar 

  133. Vega JA, Calzada B, Del Valle ME (1993) Age-induced changes in the mammalian autonomic and sensory ganglia. In: Amenta F (ed) Aging of the autonomic nervous system. CRC Press, Boca Raton, pp 37–67

    Google Scholar 

  134. Hervonen A, Partanen M, Helen P, Koistinaho J, Alho H, Baker DM, Johnson JE, Santer RM (1986) The sympathetic neuron, a model of neuronal aging. In: Pannula P, Paivarinta H, Soinila S (eds) Neurohistochemistry: modern methods and applications. Alan R. Liss, New York, pp 569–586

    Google Scholar 

  135. Partanen M, Waller SB, London ED, Hervonen A (1985) Indices of neurotransmitter synthesis and release in aging sympathetic nervous system. Neurobiol Aging 6(3):227–232

    Article  CAS  PubMed  Google Scholar 

  136. Raskind MA, Peskind ER, Veith RC, Beard JC, Gumbrecht G, Halter JB (1988) Increased plasma and cerebrospinal fluid norepinephrine in older men: differential suppression by clonidine. J Clin Endocrinol Metab 66(2):438–443

    Article  CAS  PubMed  Google Scholar 

  137. Mallick BN, Pandi-Permual SR, McCarley RW, Morrison AR (2011) Rapid eye movement sleep – regulation and function. Cambridge University Press, Cambridge

    Book  Google Scholar 

  138. McCarley RW, Hobson JA (1975) Discharge patterns of cat pontine brain stem neurons during desynchronized sleep. J Neurophysiol 38(4):751–766

    Article  CAS  PubMed  Google Scholar 

  139. Mallick BN, Majumdar S, Faisal M, Yadav V, Madan V, Pal D (2002) Role of norepinephrine in the regulation of rapid eye movement sleep. J Biosci 27(5):539–551

    Article  CAS  PubMed  Google Scholar 

  140. Majumdar S, Mallick BN (2003) Increased levels of tyrosine hydroxylase and glutamic acid decarboxylase in locus coeruleus neurons after rapid eye movement sleep deprivation in rats. Neurosci Lett 338(3):193–196

    Article  CAS  PubMed  Google Scholar 

  141. Thakkar M, Mallick BN (1993) Effect of rapid eye movement sleep deprivation on rat brain monoamine oxidases. Neuroscience 55(3):677–683

    Article  CAS  PubMed  Google Scholar 

  142. Basheer R, Magner M, McCarley RW, Shiromani PJ (1998) REM sleep deprivation increases the levels of tyrosine hydroxylase and norepinephrine transporter mRNA in the locus coeruleus. Brain Res Mol Brain Res 57(2):235–240

    Article  CAS  PubMed  Google Scholar 

  143. Porkka-Heiskanen T, Smith SE, Taira T, Urban JH, Levine JE, Turek FW, Stenberg D (1995) Noradrenergic activity in rat brain during rapid eye movement sleep deprivation and rebound sleep. Am J Phys 268(6 Pt 2):R1456–R1463

    CAS  Google Scholar 

Download references

Acknowledgments

RM received DST-WOSA fellowship. AK received CSIR and BUILDER (DBT) fellowship. Research funding to BNM through institutional support under BUILDER (DBT), PURSE (DST), UPOE II (UGC), DRS (UGC), and grants from UGC and J C Bose fellowship are acknowledged.

Author Contributions

All authors contributed toward preparing this manuscript.

Conflict of Interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birendra Nath Mallick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehta, R., Kumar, A., Mallick, B.N. (2019). Association Between Ageing and REM Sleep Loss: Noradrenaline Acting as a Mediator. In: Rath, P. (eds) Models, Molecules and Mechanisms in Biogerontology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3585-3_6

Download citation

Publish with us

Policies and ethics