Skip to main content

Genetics, Ageing and Human Health

  • Chapter
  • First Online:
Models, Molecules and Mechanisms in Biogerontology
  • 452 Accesses

Abstract

Ageing is a gradual impairment of physiological processes, leading to compromised cellular functions enhancing susceptibility to death. Ageing also becomes the primary cause of major human pathological disorders, comprising neurodegenerative diseases, cardiovascular disorders, cancer, and many more. In the developed as well as the developing world, ageing represents the biggest cause of illness and mortality. Ageing can be controlled to some extent by targeting genetic corridors and biochemical pathways implicated with human health. The idea of targeting ageing by reversing the pathogenesis of diseases seems to be promising but poses its own challenges. This chapter elucidates the genetic disorders affecting the aged people highlighting the challenges related to their healthcare system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dar BA (2015) Glycosylated hemoglobin (HbA1c): a biomarker of anti aging. Indian J Appl Res 5(5):10–12

    Google Scholar 

  2. Wilson VL, Jones PA (1983) DNA methylation decreases in aging but not in immortal cells. Science 220(4601):1055–1057

    Article  CAS  PubMed  Google Scholar 

  3. Casillas MA et al (2003) Transcriptional control of the DNA methyltransferases is altered in aging and neoplastically-transformed human fibroblasts. Mol Cell Biochem 252(1–2):33–43

    Article  CAS  PubMed  Google Scholar 

  4. Esteller M (2003) Relevance of DNA methylation in the management of cancer. Lancet Oncol 4(6):351–358

    Article  CAS  PubMed  Google Scholar 

  5. Lopez-Otin C et al (2013) The hallmarks of aging. Cell 153(6):1194–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kennedy BK, Pennypacker JK (2014) Drugs that modulate aging: the promising yet difficult path ahead. Transl Res 163(5):456–465

    Article  PubMed  Google Scholar 

  7. Burton DG et al (2009) Microarray analysis of senescent vascular smooth muscle cells: a link to atherosclerosis and vascular calcification. Exp Gerontol 44(10):659–665

    Article  CAS  PubMed  Google Scholar 

  8. Powell D (1998) There is no such thing as ageing: ageing has been defined as to grow or make old. BMJ [Br Med J] 316(7143):1531

    Article  CAS  Google Scholar 

  9. Rose MR (1985) Life history evolution with antagonistic pleiotropy and overlapping generations. Theor Popul Biol 28(3):342–358

    Article  Google Scholar 

  10. López-Otín C et al (2013) The hallmarks of aging. Cell 153(6):1194–1217

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dubois B et al (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS–ADRDA criteria. Lancet Neurol 6(8):734–746

    Article  PubMed  Google Scholar 

  12. Mullan M et al (1992) A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N–terminus of β–amyloid. Nat Genet 1(5):345–347

    Article  CAS  PubMed  Google Scholar 

  13. McGeer PL, Schulzer M, McGeer EG (1996) Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease a review of 17 epidemiologic studies. Neurology 47(2):425–432

    Article  CAS  PubMed  Google Scholar 

  14. Lu T et al (2014) REST and stress resistance in ageing and Alzheimer/’s disease. Nature 507(7493):448–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Association. A.s (2013) Alzheimer’s disease facts and figures. Alzheimers Dement 9(2):208–245

    Article  Google Scholar 

  16. Haass C, De Strooper B (1999) The presenilins in Alzheimer’s disease – proteolysis holds the key. Science 286(5441):916–919

    Article  CAS  PubMed  Google Scholar 

  17. Schenk D et al (1999) Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400(6740):173–177

    Article  CAS  PubMed  Google Scholar 

  18. Bard F et al (2000) Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6(8):916–919

    Article  CAS  PubMed  Google Scholar 

  19. DeMattos RB et al (2001) Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci 98(15):8850–8855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rogers J et al (1996) Inflammation and Alzheimer’s disease pathogenesis. Neurobiol Aging 17(5):681–686

    Article  CAS  PubMed  Google Scholar 

  21. Jick H et al (2000) Statins and the risk of dementia. Lancet 356(9242):1627–1631

    Article  CAS  PubMed  Google Scholar 

  22. Wolozin B et al (2000) Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch Neurol 57(10):1439–1443

    Article  CAS  PubMed  Google Scholar 

  23. Bush AI et al (1994) Rapid induction of Alzheimer Ab amyloid formation by zinc. Sci-AAAS-Wkly Pap Ed 265(5177):1464–1467

    CAS  Google Scholar 

  24. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356

    Article  CAS  PubMed  Google Scholar 

  25. Polymeropoulos MH et al (1996) Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23. Science 274(5290):1197–1199

    Article  CAS  PubMed  Google Scholar 

  26. Lawrence RC et al (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: part II. Arthritis Rheum 58(1):26–35

    Article  PubMed  PubMed Central  Google Scholar 

  27. Murphy L et al (2008) Lifetime risk of symptomatic knee osteoarthritis. Arthritis Care Res 59(9):1207–1213

    Article  Google Scholar 

  28. Lawrence J, Bremner J, Bier F (1966) Osteo-arthrosis. Prevalence in the population and relationship between symptoms and x-ray changes. Ann Rheum Dis 25(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Taniguchi N et al (2009) Aging-related loss of the chromatin protein HMGB2 in articular cartilage is linked to reduced cellularity and osteoarthritis. Proc Natl Acad Sci 106(4):1181–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Martin JA, Ellerbroek SM, Buckwalter JA (1997) Age-related decline in chondrocyte response to insulin-like growth factor-I: the role of growth factor binding proteins. J Orthop Res 15(4):491–498

    Article  CAS  PubMed  Google Scholar 

  31. Loeser RF et al (2000) Reduction in the chondrocyte response to insulin-like growth factor 1 in aging and osteoarthritis. Arthritis Rheum 43(9):2110–2120

    Article  CAS  PubMed  Google Scholar 

  32. Loeser RF, Shanker G (2000) Autocrine stimulation by insulin-like growth factor 1 and insulin-like growth factor 2 mediates chondrocyte survival in vitro. Arthritis Rheum 43(7):1552

    Article  CAS  PubMed  Google Scholar 

  33. Chubinskaya S et al (2002) Age-related changes in cartilage endogenous osteogenic protein-1 (OP-1). Biochim Biophys Acta (BBA) – Mol Basis Dis 1588(2):126–134

    Article  CAS  Google Scholar 

  34. Palotie A et al (1989) Predisposition to familial osteoarthrosis linked to type II collagen gene. Lancet 333(8644):924–927

    Article  Google Scholar 

  35. Pun YL et al (1994) Clinical correlations of osteoarthritis associated with a single-base mutation (Arginine519 to Cysteine) in type II procollagen gene. Arthritis Rheum 37(2):264–269

    Article  CAS  PubMed  Google Scholar 

  36. Vikkula M et al (1993) Early-onset osteoarthritis linked to the type ii procollagen gene. Detailed clinical phenotype and further analyses of the gene. Arthritis Rheum 36(3):401–409

    Article  CAS  PubMed  Google Scholar 

  37. Baldwin CT et al (1995) Linkage of early-onset osteoarthritis and chondrocalcinosis to human chromosome 8q. Am J Hum Genet 56(3):692

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Goronzy JJ, Weyand CM (2003) Ageing, autoimmunity and arthritis: T-cell senescence and contraction of T-cell repertoire diversity–catalysts of autoimmunity and chronic inflammation. Arthritis Res Ther 5(5):225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Landles C, Bates GP (2004) Huntingtin and the molecular pathogenesis of Huntington’s disease. EMBO Rep 5(10):958–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wexler A (2006) Huntington disease. J R Soc Med 99(2):53

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jessup M et al (2009) Focused update: ACCF/AHA guidelines for the diagnosis and management of heart failure in adults. Circulation 119(14):1977–2016

    Article  PubMed  Google Scholar 

  42. Thomas S, Rich MW (2007) Epidemiology, pathophysiology, and prognosis of heart failure in the elderly. Heart Fail Clin 3(4):381–387

    Article  PubMed  Google Scholar 

  43. Tung RT et al (1994) Idiopathic ventricular fibrillation in out-of-hospital cardiac arrest survivors. Pacing Clin Electrophysiol 17(8):1405–1412

    Article  CAS  PubMed  Google Scholar 

  44. Chen Q et al (1998) Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 392(6673):293–296

    Article  CAS  PubMed  Google Scholar 

  45. Lossos A et al (1998) Adult polyglucosan body disease in Ashkenazi Jewish patients carrying the Tyr329 Ser mutation in the glycogen-branching enzyme gene. Ann Neurol 44(6):867–872

    Article  CAS  PubMed  Google Scholar 

  46. Robitaille Y et al (1980) A distinct form of adult polyglucosan body disease with massive involvement of central and peripheral neuronal processes and astrocytes: a report of four cases and a review of the occurrence of polyglucosan bodies in other conditions such as Lafora’s disease and normal ageing. Brain J Neurol 103(2):315–336

    Article  CAS  Google Scholar 

  47. Klein CJ (2013) Adult polyglucosan body disease. University of Washington, Seattle

    Google Scholar 

  48. Mochel F et al (2012) Adult polyglucosan body disease: natural history and key magnetic resonance imaging findings. Ann Neurol 72(3):433–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Akman HO et al (2015) Deep intronic GBE1 mutation in manifesting heterozygous patients with adult polyglucosan body disease. JAMA Neurol 72(4):441–445

    Article  PubMed  Google Scholar 

  50. Mallikarjun V, Swift J (2016) Therapeutic manipulation of ageing: repurposing old dogs and discovering new tricks. EBioMedicine 14:24–31

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sher Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, P., Queen, A., Hassan, M.I., Ali, S. (2019). Genetics, Ageing and Human Health. In: Rath, P. (eds) Models, Molecules and Mechanisms in Biogerontology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3585-3_10

Download citation

Publish with us

Policies and ethics