Multifractal Study of Parkinson’s and Huntington’s Diseases with Human Gait Data



In this chapter we have presented how multifractal detrended cross-correlation analysis technique can be used to study Parkinson’s disease from human gait pattern of those patients when compared to those of normal people. The chapter further emphasizes that this study is important as a new novel technique whereby data from the correlation between the two feet provides status of the degree of neurodegenerative disorder. The chapter also presents how multifractal methodologies can also be applied in Huntington’s disease.



The authors gratefully acknowledge Physica A and Elsevier Publishing Co. for providing the copyrights of Figs. 5.2a, 5.2b, 5.2c, 5.2d, 5.2e and 5.2f, 5.3a, 5.3b, 5.4a, 5.4b, 5.5a, 5.5b, 5.6a, 5.6b, 5.7a, 5.7b, 5.9a, 5.9b and Tables 5.1 and 5.2 for use in this chapter.


  1. Ashkenazy Y, Hausdorff JM, Ivanov P, Goldberger AL, Stanley HE (2002) A stochastic model of human gait dynamics. Phys A 316:662–670CrossRefGoogle Scholar
  2. Baltadjieva R, Giladi N, Gruendlinger L, Peretz C, Hausdorff JM (2006) Marked alterations in the gait timing and rhythmicity of patients with de novo Parkinson’s disease. Eur J Neurosci 24:1815–1820PubMedCrossRefPubMedCentralGoogle Scholar
  3. Beauchet O, Herrmann FR, Grandjean R, Dubost V, Allali G (2008) Concurrent validity of SMTEC® footswitches system for the measurement of temporal gait parameters. Gait Posture 27:156–159PubMedCrossRefPubMedCentralGoogle Scholar
  4. Blin O, Ferrandez AM, Serratrice G (1990) Quantitative analysis of gait in Parkinson patients: increased variability of stride length. J Neurol Sci 98:91–97PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bunde A, Knopp J, Schellnhuber HJ (eds) (2002) The science of disasters. Springer, BerlinGoogle Scholar
  6. Buzzi UH, Ulrich BD (2004) Dynamic stability of gait cycles as a function of speed and system constraints. Mot Control 8:241–254CrossRefGoogle Scholar
  7. Cavanaugh JT, Coleman KL, Gaines JM et al (2007) Using step activity monitoring to characterize ambulatory activity in community-dwelling older adults. J Am Geriatr Soc 55:120–124PubMedCrossRefPubMedCentralGoogle Scholar
  8. Collins JJ, Richmond SA (1994) Hard-wired central pattern generators for quadrupedal locomotion. Biol Cybern 71:375–385CrossRefGoogle Scholar
  9. Collins JJ, Stewart IN (1993) Coupled non-linear oscillators and the symmetries of animal gaits. J Nonlinear Sci 3:349–392CrossRefGoogle Scholar
  10. Costa M, Peng CK, Goldberger AL, Hausdorff JM (2003) Multiscale entropy analysis of human gait dynamics. Phys A 330:53–60CrossRefGoogle Scholar
  11. Davis R, Õunpuu S, Tyburski D, Gage JR (1991) A gait analysis data collection and reduction technique. Hum Mov Sci 10:575–587CrossRefGoogle Scholar
  12. Decker LM, Cignettia F, Stergiou N (2010) Complexity and human gait. Revista Andaluza de Medicina del Deporte 3:2–12Google Scholar
  13. Delignières D, Torre K (2009) Fractal dynamics of human gait: a reassessment of the 1996 data of Hausdorff et al. J Appl Physiol 106:1272–1279PubMedCrossRefPubMedCentralGoogle Scholar
  14. Dingwell JB, Cusumano JP (2000) Non-linear time series analysis of normal and pathological human walking. Chaos 10:848–863PubMedCrossRefPubMedCentralGoogle Scholar
  15. Dingwell JB, Kang HG (2007) Differences between local and orbital dynamic stability during human walking. J Biomech Eng 129:586–593PubMedCrossRefPubMedCentralGoogle Scholar
  16. Dutta S, Ghosh D, Chatterjee S (2013) Multifractal Detrended fluctuation analysis of human gait diseases. Front Physiol 4:274PubMedPubMedCentralCrossRefGoogle Scholar
  17. Dutta S, Ghosh D, Samanta S (2016) Non linear approach to study the dynamics of neurodegenerative diseases by multifractal Detrended cross-correlation analysis—a quantitative assessment on gait disease. Phys A 448:181–195CrossRefGoogle Scholar
  18. Feder J (1988) Fractals. Plenum Press, New YorkCrossRefGoogle Scholar
  19. Frenkel-Toledo S, Giladi N, Peretz C, Herman T, Gruendlinger L et al (2005a) Treadmill walking as an external pacemaker to improve gait rhythm and stability in Parkinson’s disease. Mov Disord 20:1109–1114PubMedCrossRefPubMedCentralGoogle Scholar
  20. Frenkel-Toledo S, Giladi N, Peretz C, Herman T, Gruendlinger L et al (2005b) Effect of gait speed on gait rhythmicity in Parkinson's disease: variability of stride time and swing time respond differently. J Neuroeng Rehabil 2:23PubMedPubMedCentralCrossRefGoogle Scholar
  21. Gabell A, Nayak US (1984) The effect of age on variability in gait. J Gerontol 39:662–666PubMedCrossRefPubMedCentralGoogle Scholar
  22. Goldberger AL, Peng CK, Lipsitz LA (2002a) What is physiologic complexity and how does it change with aging and disease? Neurobiol Aging 23:23–26PubMedCrossRefPubMedCentralGoogle Scholar
  23. Goldberger AL, Amaral LA, Hausdorff JM, Ivanov PC, Peng CK et al (2002b) Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci U S A 99:2466–2472PubMedPubMedCentralCrossRefGoogle Scholar
  24. Griffin L, West DJ, West BJ (2000) Random stride intervals with memory. J Biol Phys 26:185PubMedPubMedCentralCrossRefGoogle Scholar
  25. Grimbergen YA, Knol MJ, Bloem BR, Kremer BP, Roos RA et al (2008) Falls and gait disturbances in Huntington's disease. Mov Disord 23:970–976PubMedCrossRefPubMedCentralGoogle Scholar
  26. Guimares RM, Isaacs B (1980) Characteristics of the gait in old people who fall. Int Rehabil Med 2:177–180CrossRefGoogle Scholar
  27. Harbourne RT, Stergiou N (2009) Movement variability and the use of non-linear tools: principles to guide physical therapy practice. Phys Ther 89:267–282PubMedPubMedCentralCrossRefGoogle Scholar
  28. Hausdorf JM, Alexander NB (2005) Gait disorders: evaluation and management. Informa Healthcare, New YorkCrossRefGoogle Scholar
  29. Hausdorf JM, Mitchell SL, Firtion R, Peng CK, Cudkowiczet ME, al. (1997) Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington’s disease. J Appl Physiol 82:262–269CrossRefGoogle Scholar
  30. Hausdorf JM, Ashkenazy Y, Peng CK, Ivanov PC, Stanley HE et al (2001) When human walking becomes random walking: fractal analysis and modeling of gait rhythm fuctuations. Phys A 302:138–147 and references cited thereinCrossRefGoogle Scholar
  31. Hausdorf JM, Lowenthal J, Herman T, Gruendlinger L, Peretz C et al (2007) Rhythmic auditory stimulation modulates gait variability in Parkinson's disease. Eur J Neurosci 26:2369–2375CrossRefGoogle Scholar
  32. Hausdorff JM (2007) Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human walking. Hum Mov Sci 26:555–589PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hausdorff JM, Peng CK, Ladin Z, Wei JY, Goldberger AL (1995) Is walking a random walk? Evidence for long-range correlations in stride interval of human gait. J Appl Physiol 78:349–358PubMedCrossRefPubMedCentralGoogle Scholar
  34. Hausdorff JM, Purdon PL, Peng CK, Ladin Z, Wei JY et al (1996) Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. J Appl Physiol 80:1448–1457PubMedCrossRefPubMedCentralGoogle Scholar
  35. Hausdorff JM, Cudkowicz ME, Firtion R, Wei JY, Goldberger AL (1998) Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Mov Disord 13:428–437PubMedCrossRefPubMedCentralGoogle Scholar
  36. Hausdorff JM, Zemany L, Peng CK, Goldberger AL (1999) Maturation of gait dynamics: stride-to-stride variability and its temporal organization in children. J Appl Physiol 86:1040–1047PubMedCrossRefGoogle Scholar
  37. Hausdorff JM, Lertratanakul A, Cudkowicz ME, Peterson AL, Kaliton D, Goldberger AL (2000) Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis. J Appl Physiol 88:2045–2053PubMedCrossRefGoogle Scholar
  38. He LY, Chen SP (2011) Multifractal Detrended cross-correlation analysis of agricultural futures markets. Chaos, Solitons Fractals 44:355–361CrossRefGoogle Scholar
  39. Herman T, Giladi N, Gurevich T, Hausdorff JM (2005) Gait instability and fractal dynamics of older adults with a cautious gait: why do certain older adults walk fearfully? Gait Posture 21:178–185PubMedCrossRefGoogle Scholar
  40. Hillmana SJ, Stansfieldb BW, Richardsonc AM, Robb JE (2009) Development of temporal and distance parameters of gait in normal children. Gait Posture 29:81–85CrossRefGoogle Scholar
  41. Holt KG, Saltzman E, Ho CL, Ulrich BD (2007) Scaling of dynamics in the earliest stages of walking. Phys Ther 87:1458–1467PubMedCrossRefPubMedCentralGoogle Scholar
  42. Hurst HE (1951) Long-term storage capacity of reservoirs. Trans Am Soc Civ Eng 116:770–808Google Scholar
  43. Inman VT, Ralston HJ, Todd F (1981) Human Walking. Williams & Wilkins, Baltimore, p 154Google Scholar
  44. Inman VT, Ralston HJ, Todd F (2006) In: Rose J, Gamble Lippincott JG (eds) Human walking. Williams & Wilkins, Philadelphia, pp 7–18Google Scholar
  45. Ivanov PC, Amaral LAN, Goldberger AL, Havlin S, Rosenblum MG et al (1999) Multifractality in human heartbeat dynamics. Nature 399:461–465PubMedCrossRefPubMedCentralGoogle Scholar
  46. Ivanov P, Amaral LAN, Goldberger AL, Havlin S, Rosenblum MG et al (2001) From 1/f noise to multifractal cascades in heartbeat dynamics. Chaos 11:641–652PubMedCrossRefPubMedCentralGoogle Scholar
  47. Ivanov PC, Ma QDY, Bartsch R, Hausdorff JM, Amaral LAN et al (2009) Levels of complexity in scale-invariant neural signals. Phys Rev E 79:041920CrossRefGoogle Scholar
  48. Jordan K, Challis JH, Newell KM (2006) Long range correlations in the stride interval of running. Gait Posture 24:120–125PubMedCrossRefPubMedCentralGoogle Scholar
  49. Jordan K, Challis JH, Newell KM (2007a) Walking speed influences on gait cycle variability. Gait Posture 26:128–134PubMedCrossRefPubMedCentralGoogle Scholar
  50. Jordan K, Challis JH, Newell KM (2007b) Speed influences on the scaling behavior of gait cycle fluctuations during treadmill running. Hum Mov Sci 26:87–102PubMedCrossRefPubMedCentralGoogle Scholar
  51. Kadaba MP, Ramakrishnan HK, Wootten ME, Gainey J, Gorton G et al (1989) Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J Orthop Res 7:849–860PubMedCrossRefPubMedCentralGoogle Scholar
  52. Khandoker AH, Palaniswami R, Begg RK (2008) A comparative study on approximate entropy measure and poincaré plot indexes of minimum foot clearance variability in the elderly during walking. J Neuroeng Rehabil 5:4PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kuo AD (2002) The relative roles of feedforward and feedback in the control of rhythmic movements. Mot Control 6:129CrossRefGoogle Scholar
  54. Kurz M, Stergiou N (2003) The aging human neuromuscular system expresses less certainty for selecting joint kinematics during gait. Neurosci Lett 348:155–158PubMedCrossRefPubMedCentralGoogle Scholar
  55. Kurz M, Stergiou N (2007) Do horizontal propulsive forces influence the non-linear structure of locomotion? J Neuroeng Rehabil 1:4–30Google Scholar
  56. Lomax RG (2007) Statistical concepts: a second course for education and the behavioral sciences. Lawrence Erlbaum Associates, MahwahGoogle Scholar
  57. Malamud BD, Turcotte DL (1999) Self-affine time series: i. generation and analysis. Adv Geophys 40:1–90CrossRefGoogle Scholar
  58. Matjaz P (2005) The dynamics of human gait. Eur J Phys 26:525CrossRefGoogle Scholar
  59. Miller RA, Thaut MH, McIntosh GC, Rice RR (1996) Components of EMG symmetry and variability in parkinsonian and healthy elderly gait. Electroencephalogr Clin Neurophysiol 101:1–7PubMedCrossRefPubMedCentralGoogle Scholar
  60. Miller DJ, Stergiou N, Kurz MJ (2006) An improved surrogate method for detecting the presence of chaos in gait. J Biomech 39:2873–2876PubMedCrossRefPubMedCentralGoogle Scholar
  61. Moraiti C, Stergiou N, Ristanis S, Georgoulis AD (2007) ACL deficiency affects stride-to-stride variability as measured using non-linear methodology. Knee Surg Sports Traumatol Arthrosc 15:1406–1413PubMedCrossRefPubMedCentralGoogle Scholar
  62. Morris ME, Iansek R, Matyas TA, Summers JJ (1994a) The pathogenesis of gait hypokinesia in Parkinson’s disease. Brain 117:1169–1181PubMedCrossRefPubMedCentralGoogle Scholar
  63. Morris ME, Iansek R, Matyas TA, Summers JJ (1994b) Ability to modulate walking cadence remains intact in Parkinson’s disease. J Neurol Neurosurg Psychiatry 57:1532–1534PubMedPubMedCentralCrossRefGoogle Scholar
  64. Morris ME, Iansek R, Matyas TA, Summers JJ (1996a) Stride length regulation in Parkinson’s disease. Normalization strategies and underlying mechanisms. Brain 119:551–568PubMedCrossRefPubMedCentralGoogle Scholar
  65. Morris ME, Matyas TA, Iansek R, Summers JJ (1996b) Temporal stability of gait in Parkinson's disease. Phys Ther 76:763–777PubMedCrossRefPubMedCentralGoogle Scholar
  66. Morris ME, McGinley J, Huxham F, Collier J, Iansek R (1999) Constraints on the kinetic and spatiotemporal parameters of gait in Parkinson’s disease. Hum Mov Sci 18:461–483CrossRefGoogle Scholar
  67. Morris ME, Huxham F, McGinley J, Dodd K, Iansek R (2001) The biomechanics and motor control of gait in Parkinson disease. Clin Biomech 16:459–470CrossRefGoogle Scholar
  68. Movahed S, Hermanis E (2008) Fractal analysis of river flow fluctuations. Phys A 387:915–932CrossRefGoogle Scholar
  69. Muñoz-Diosdado A (2005) A non linear analysis of human gait time series based on multifractal analysis and cross correlations. J Phys Conf Ser 23:87–95CrossRefGoogle Scholar
  70. Oswiecimka P, Drożdż S, Kwapień J, Górski A (2013) Effect of detrending on multifractal characteristics. Acta Phys Pol A 123:597–603CrossRefGoogle Scholar
  71. Oswiecimka P, Drożdż S, Forczek M, Jadach S, Kwapien J et al (2014) Detrended cross-correlation analysis consistently extended to multifractality. Phys Rev E 89:023305CrossRefGoogle Scholar
  72. Pailhous J, Bonnard M (1992) Steady-state fluctuations of human walking. Behav Brain Res 47:181–190PubMedCrossRefPubMedCentralGoogle Scholar
  73. Palta AE (1985) Some characteristics of EMG patterns during locomotion: implications for locomotor control processes. J Mot Behav 17:443–461CrossRefGoogle Scholar
  74. Peitgen HO, Jurgens H, Saupe D (1992) Chaos and fractals. Springer-Verlag, New York Appendix BCrossRefGoogle Scholar
  75. Podobnik B, Fu DF, Stanley HE, Ivanov PC (2007) Power-law autocorrelated stochastic processes with long-range cross-correlations. Eur Phys J B 56:47–52CrossRefGoogle Scholar
  76. Podobnik B, Grosse I, Horvatic D, IIic S, Ivanov PC et al (2009) Quantifying cross-correlations using local and global detrending approaches. Eur Phys J B 71:243–250CrossRefGoogle Scholar
  77. Robbins SM, Astephen Wilson JL, Rutherford DJ, Hubley-Kozey CL (2013) Reliability of principal components and discrete parameters of knee angle and moment gait waveforms in individuals with moderate knee osteoarthritis. Gait Posture 38:421–427PubMedCrossRefPubMedCentralGoogle Scholar
  78. Scafetta N, Griffin L, West BJ (2003) Hölder exponent spectra for human gait. Phys A 328:561–583CrossRefGoogle Scholar
  79. Scafetta N, Moon RE, West BJ (2007) Fractal response of physiological signals to stress conditions, environmental changes, and neurodegenerative diseases. Complexity 12:12–17CrossRefGoogle Scholar
  80. Scafetta N, Marchi D, West BJ (2009) Understanding the complexity of human gait dynamics. Chaos 19:026108–026110PubMedCrossRefPubMedCentralGoogle Scholar
  81. Sekine M, Tamura T, Akay M, Fujimoto T, Togawa T et al (2002) Discrimination of walking patterns using wavelet-based fractal analysis. IEEE Trans Neural Syst Rehabil Eng 10:188–196PubMedCrossRefPubMedCentralGoogle Scholar
  82. Sekine M, Akay M, Tamura T, Higashi Y (2004) Fractal dynamics of body motion in patients with Parkinson’s disease. J Neural Eng 1:8–15PubMedCrossRefPubMedCentralGoogle Scholar
  83. Singh M, Singh M, Paramjeet (2013) Neuro-degenerative disease diagnosis using human gait: a review. IJITKMI 7:16–20Google Scholar
  84. Smith BA, Teulier C, Sansom J, Stergiou N, Ulrich BD (2011) Approximate entropy values demonstrate impaired neuromotor control of spontaneous leg activity in infants with myelomeningocele. Pediatr Phys Ther 23(3):241PubMedPubMedCentralCrossRefGoogle Scholar
  85. Stergiou N, Decker LM (2011) Human movement variability, non-linear dynamics, and pathology: is there a connection? Hum Mov Sci 30:869–888PubMedPubMedCentralCrossRefGoogle Scholar
  86. Stergiou N, Buzzi UH, Kurz MJ, Heidel J (2004) Non-linear tools in human movement. In: Stergiou N (ed) Innovative analyses of human movement. Human Kinetics, Champaign, pp 63–90Google Scholar
  87. Stolze H, Kuhtz-Buschbeck JP, Drucke H, Johnk K, Illert M et al (2001) Comparative analysis of the gait disorder of normal pressure hydrocephalus and Parkinson’s disease. J Neurol Neurosurg Psychiatry 70:289–297PubMedPubMedCentralCrossRefGoogle Scholar
  88. Tochigi Y, Segal NA, Vaseenon T, Brown TD (2012) Entropy analysis of tri-axial leg acceleration signal waveforms for measurement of decrease of physiological variability in human gait. J Orthop Res 30:879–904CrossRefGoogle Scholar
  89. Torres BDLC, Sánchez López MD, Sarabia Cachadiña E, Naranjo Orellana J (2013) Entropy in the analysis of gait complexity: a state of the art. Br J Appl Sci Technol 3:1097–1105CrossRefGoogle Scholar
  90. Van Emmerik REA, Rosenstein MT, McDermott WJ, Hamill J (2004) Non-linear dynamical approaches to human movement. J Appl Biomech 20:396–420CrossRefGoogle Scholar
  91. Van Orden GC, Kloos H, Wallot S (2009) Living in the pink: intentionality, wellbeing, and complexity. In: Handbook of the philosophy of science volume 10: philosophy of complex systems, vol 10. Elsevier, Amsterdam, pp 639–682Google Scholar
  92. Wang GJ, Xie C (2012) Cross-correlations between WTI crude oil market and US stock market: a perspective from Econophysics. Acta Phys Pol B 43:2021–2036CrossRefGoogle Scholar
  93. Webster KE, Wittwer JE, Feller JA (2005) Validity of the GAITRite walkway system for the measurement of averaged and individual step parameters of gait. Gait Posture 22:317–321PubMedCrossRefPubMedCentralGoogle Scholar
  94. West BJ, Scafetta N (2003) Non-linear dynamical model of human gait. Phys Rev E 67:051917CrossRefGoogle Scholar
  95. Winter DA (1984) Kinematic and kinetic patterns in human gait: variability and compensating effects. Hum Mov Sci 3:51–76CrossRefGoogle Scholar
  96. Winters JM, Crago PE (2000) Biomechanics and neural control of posture and movements. Springer, New YorkCrossRefGoogle Scholar
  97. Wu Y, Krishnan S (2010) Statistical analysis of gait rhythm in patients with Parkinson’s disease. IEEE Trans Neural Syst Rehabil Eng 18:150–158PubMedCrossRefPubMedCentralGoogle Scholar
  98. Yamasaki M, Sasaki T, Tsuzki S, Torii M (1984) Stereotyped pattern of lower limb movement during level and grade walking on treadmill. Ann Physiol Anthropol 3:291–296PubMedCrossRefPubMedCentralGoogle Scholar
  99. Yamasaki M, Sasaki T, Torii M (1991) Sex difference in the pattern of lower limb movement during treadmill walking. Eur J Appl Physiol Occup Physiol 62:99–103PubMedCrossRefPubMedCentralGoogle Scholar
  100. Yogev G, Giladi N, Peretz C, Springer S, Simon ES et al (2005) Dual tasking, gait rhythmicity, and Parkinson's disease: which aspects of gait are attention demanding? Eur J Neurosci 22:1248–1256PubMedCrossRefPubMedCentralGoogle Scholar
  101. Yoshino K, Motoshige T, Araki T, Matsuoka K (2004) Effect of prolonged free-walking fatigue on gait and physiological rhythm. J Biomech 37:1271–1280PubMedCrossRefPubMedCentralGoogle Scholar
  102. Yu ZG, Wang B (2001) A time series model for CDS sequences in complete genome. Chaos, Solitons Fractals 12:519–526CrossRefGoogle Scholar
  103. Zhao X, Shang P, Jin Q (2011) Multifractal detrended cross-correlation analysis of Chinese stock markets based on time delay. Fractals 19:329–338CrossRefGoogle Scholar
  104. Zhou WX (2008) Multifractal detrended cross-correlation analysis for two nonstationary signals. Phys Rev E 77:066211CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of PhysicsSir C V Raman Centre for Physics and Music, Jadavpur UniversityKolkataIndia
  2. 2.Department for PhysicsSeacom Engineering CollegeHowrahIndia
  3. 3.Electrical and Electronics EngineeringICFAI UniversityAgartalaIndia

Personalised recommendations