Skip to main content

Small Fiber Pathology and Functional Impairment in Syndromes of Predominantly Large Fiber Neuropathy

  • 573 Accesses

Abstract

In peripheral neuropathies with sensory ataxia or weakness of distal limbs, traditionally nerve conduction studies are the first-line tests, and these neuropathies are classified as large fiber neuropathy including (1) inflammatory neuropathies of Guillain-Barré syndrome (GBS), chronic inflammatory demyelinating polyneuropathy (CIDP), and polyneuropathy associated with organomegaly, endocrinopathy, monoclonal gammopathy, and skin hyperpigmentation (POEMS), (2) hereditary neuropathies of Charcot-Marie-Tooth (CMT) disease encompassing different genotypes, and (3) chemotherapy-induced peripheral neuropathy (CIPN). Patients with this phenotype of large fiber neuropathy frequently have symptoms and signs suggesting small fiber involvement, i.e., small fiber nerve degeneration and functional impairment. With the applications of skin biopsy for measuring intraepidermal nerve fiber density (IENFD), quantitative sensory testing for assessing thermal thresholds, and autonomic function tests for examining sympathetic and parasympathetic axis, concomitant small fiber pathology and functional impairment (small fiber pathology or syndrome) were documented in some of these neuropathies traditionally considered as pure large fiber neuropathy. Not only serving as a criterion of small fiber pathology, parameters of small fiber examinations also provide a surrogate marker of disease activities and progression reflecting generalized ambulation difficulty and correlated with patient-reported outcome measure of quality of life.

Keywords

  • Large fiber neuropathy
  • Small fiber neuropathy
  • Pain-evoked potential
  • Quality of life
  • Guillain-Barré syndrome
  • Charcot-Marie-Tooth disease
  • Chronic inflammatory demyelinating polyneuropathy
  • Chemotherapy-induced peripheral neuropathy

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-13-3546-4_9
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-981-13-3546-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   79.99
Price excludes VAT (USA)

References

  1. Chan ACY, Wilder-Smith EP. Small fiber neuropathy: getting bigger! Muscle Nerve. 2016;53:671–82.

    CrossRef  Google Scholar 

  2. Gibbons CH. Small fiber neuropathies. Continuum. 2014;20:1398–412.

    Google Scholar 

  3. Shun CT, Chang YC, Wu HP, et al. Skin denervation in type 2 diabetes: correlations with diabetic duration and functional impairments. Brain. 2004;127:1593–605.

    CrossRef  Google Scholar 

  4. Boruchow SA, Gibbons CH. Utility of skin biopsy in management of small fiber neuropathy. Muscle Nerve. 2013;48:877–82.

    CrossRef  Google Scholar 

  5. Khoshnoodi MA, Truelove S, Burakgazi A, et al. Longitudinal assessment of small fiber neuropathy: evidence of a non-length-dependent distal axonopathy. JAMA Neurol. 2016;73:684–90.

    CrossRef  Google Scholar 

  6. Chao CC, Wu VC, Tan CH, et al. Skin denervation and its clinical significance in late-stage chronic kidney disease. Arch Neurol. 2011;68:200–6.

    CrossRef  Google Scholar 

  7. Singleton JR, Marcus RL, Lessard MK, et al. Supervised exercise improves cutaneous reinnervation capacity in metabolic syndrome patients. Ann Neurol. 2015;77:146–53.

    CrossRef  Google Scholar 

  8. Fokke C, van den Berg B, Drenthen J, et al. Diagnosis of Guillain-Barre syndrome and validation of Brighton criteria. Brain. 2014;137:33–43.

    CrossRef  Google Scholar 

  9. Oaklander AL, Lunn MP, Hughes RA, et al. Treatments for chronic inflammatory demyelinating polyradiculoneuropathy (CIDP): an overview of systematic reviews. Cochrane Database Syst Rev. 2017. https://doi.org/10.1002/14651858.CD010369.pub2.

  10. Pan CL, Tseng TJ, Lin YH, et al. Cutaneous innervation in Guillain-Barre syndrome: pathology and clinical correlations. Brain. 2003;126:386–97.

    CrossRef  Google Scholar 

  11. Martinez V, Fletcher D, Martin F, et al. Small fibre impairment predicts neuropathic pain in Guillain-Barre syndrome. Pain. 2010;151:53–60.

    CrossRef  PubMed  Google Scholar 

  12. Binder A, Baron R. Size matters—small fiber neuropathy in the Guillain-Barre syndrome. Pain. 2010;151:9–10.

    CrossRef  Google Scholar 

  13. Ruts L, van Doorn PA, Lombardi R, et al. Unmyelinated and myelinated skin nerve damage in Guillain-Barre syndrome: correlation with pain and recovery. Pain. 2012;153:399–409.

    CAS  CrossRef  Google Scholar 

  14. Chao CC, Hsieh ST, Chiu MJ, et al. Effects of aging on contact heat evoked potentials: the physiological assessment of thermal perception. Muscle Nerve. 2007;36:30–8.

    CrossRef  Google Scholar 

  15. Atherton D, Facer P, Roberts K, et al. Use of the novel contact heat evoked potential stimulator (CHEPS) for the assessment of small fibre neuropathy: correlations with skin flare responses and intra-epidermal nerve fibre counts. BMC Neurol. 2007;7:21.

    CrossRef  PubMed  Google Scholar 

  16. Granovsky Y, Granot M, Nir RR, et al. Objective correlate of subjective pain perception by contact heat-evoked potentials. J Pain. 2008;9:53–63.

    CrossRef  Google Scholar 

  17. Lagerburg V, Bakkers M, Bouwhuis A, et al. Contact heat evoked potentials: normal values and use in small-fiber neuropathy. Muscle Nerve. 2015;51:743–9.

    CrossRef  Google Scholar 

  18. Parson HK, Nguyen VT, Orciga MA, et al. Contact heat-evoked potential stimulation for the evaluation of small nerve fiber function. Diabetes Technol Ther. 2013;15:150–7.

    CrossRef  Google Scholar 

  19. Zhang C, Xie B, Li X, et al. Contact heat-evoked potentials as a useful means in patients with Guillain-Barre syndrome. Neurol Sci. 2014;35:1209–14.

    CrossRef  Google Scholar 

  20. Tseng MT, Chiang MC, Chao CC, et al. fMRI evidence of degeneration-induced neuropathic pain in diabetes: enhanced limbic and striatal activations. Hum Brain Mapp. 2013;34:2733–46.

    CrossRef  PubMed  Google Scholar 

  21. Tesfaye S, Selvarajah D, Gandhi R, et al. Diabetic peripheral neuropathy may not be as its name suggests: evidence from magnetic resonance imaging. Pain. 2016;157(Suppl 1):S72–80.

    CrossRef  Google Scholar 

  22. Segerdahl AR, Themistocleous AC, Fido D, et al. A brain-based pain facilitation mechanism contributes to painful diabetic polyneuropathy. Brain. 2018;141:357–64.

    CrossRef  PubMed  Google Scholar 

  23. Uncini A, Yuki N. Sensory Guillain-Barre syndrome and related disorders: an attempt at systematization. Muscle Nerve. 2012;45:464–70.

    CrossRef  Google Scholar 

  24. Koike H, Atsuta N, Adachi H, et al. Clinicopathological features of acute autonomic and sensory neuropathy. Brain. 2010;133:2881–96.

    CrossRef  Google Scholar 

  25. Pfund Z, Stankovics J, Decsi T, et al. Childhood steroid-responsive acute erythromelalgia with axonal neuropathy of large myelinated fibers: a dysimmune neuropathy? Neuromuscul Disord. 2009;19:49–52.

    CrossRef  Google Scholar 

  26. Paticoff J, Valovska A, Nedeljkovic SS, et al. Defining a treatable cause of erythromelalgia: acute adolescent autoimmune small-fiber axonopathy. Anesth Analg. 2007;104:438–41.

    CrossRef  Google Scholar 

  27. Makonahalli R, Seneviratne J, Seneviratne U. Acute small fiber neuropathy following mycoplasma infection: a rare variant of Guillain-Barre syndrome. J Clin Neuromuscul Dis. 2014;15(4):147–51.

    CrossRef  Google Scholar 

  28. Yuki N, Chan AC, Wong AHY, et al. Acute painful autoimmune neuropathy: a variant of Guillain-Barre syndrome. Muscle Nerve. 2018;57:320–4.

    CAS  CrossRef  Google Scholar 

  29. Pan CL, Yuki N, Koga M, et al. Acute sensory ataxic neuropathy associated with monospecific anti-GD1b IgG antibody. Neurology. 2001;57:1316–8.

    CAS  CrossRef  Google Scholar 

  30. Chiang MC, Lin YH, Pan CL, et al. Cutaneous innervation in chronic inflammatory demyelinating polyneuropathy. Neurology. 2002;59:1094–8.

    CrossRef  PubMed  Google Scholar 

  31. Figueroa JJ, Dyck PJB, Laughlin RS, et al. Autonomic dysfunction in chronic inflammatory demyelinating polyradiculoneuropathy. Neurology. 2012;78:702–8.

    CAS  CrossRef  PubMed  Google Scholar 

  32. Mauermann ML, Sorenson EJ, Dispenzieri A, et al. Uniform demyelination and more severe axonal loss distinguish POEMS syndrome from CIDP. J Neurol Neurosurg Psychiatry. 2012;83:480–6.

    CrossRef  Google Scholar 

  33. Vital C, Gherardi R, Vital A, et al. Uncompacted myelin lamellae in polyneuropathy, organomegaly, endocrinopathy, M-protein and skin changes syndrome. Acta Neuropathol. 1994;87:302–7.

    CAS  CrossRef  Google Scholar 

  34. Piccione EA, Engelstad J, Dyck PJ, et al. Nerve pathologic features differentiate POEMS syndrome from CIDP. Acta Neuropathol Commun. 2016;4:116.

    CrossRef  PubMed  Google Scholar 

  35. Ohyama K, Koike H, Hashimoto R, et al. Intraepidermal nerve fibre density in POEMS (Crow-Fukase) syndrome and the correlation with sural nerve pathology. J Neurol Sci. 2016;365:207–11.

    CrossRef  Google Scholar 

  36. Koike H, Iijima M, Mori K, et al. Neuropathic pain correlates with myelinated fibre loss and cytokine profile in POEMS syndrome. J Neurol Neurosurg Psychiatry. 2008;79:1171.

    CAS  CrossRef  Google Scholar 

  37. Scarlato M, Previtali SC, Carpo M, et al. Polyneuropathy in POEMS syndrome: role of angiogenic factors in the pathogenesis. Brain. 2005;128:1911–20.

    CrossRef  Google Scholar 

  38. McCrary J, Goldstein D, Boyle F, et al. Optimal clinical assessment strategies for chemotherapy-induced peripheral neuropathy (CIPN): a systematic review and Delphi survey. Support Care Cancer. 2017;25:3485–93.

    CrossRef  Google Scholar 

  39. Curcio KR. Instruments for assessing chemotherapy-induced peripheral neuropathy: a review of the literature. Clin J Oncol Nurs. 2016;20:144–51.

    CrossRef  Google Scholar 

  40. Winters-Stone KM, Horak F, Jacobs PG, et al. Falls, functioning, and disability among women with persistent symptoms of chemotherapy-induced peripheral neuropathy. J Clin Oncol. 2017;35:2604–12.

    CrossRef  PubMed  Google Scholar 

  41. Zirpoli GR, McCann SE, Sucheston-Campbell LE, et al. Supplement use and chemotherapy-induced peripheral neuropathy in a cooperative group trial (S0221): the DELCaP study. J Natl Cancer Inst. 2017;109(12). https://doi.org/10.1093/jnci/djx098.

  42. Miaskowski C, Mastick J, Paul SM, et al. Chemotherapy-induced neuropathy in cancer survivors. J Pain Symptom Manag. 2017;54:204–18.

    CrossRef  Google Scholar 

  43. Park SB, Kwok JB, Asher R, et al. Clinical and genetic predictors of paclitaxel neurotoxicity based on patient- versus clinician-reported incidence and severity of neurotoxicity in the ICON7 trial. Ann Oncol. 2017;28:2733–40.

    CAS  CrossRef  Google Scholar 

  44. Pachman DR, Qin R, Seisler D, et al. Comparison of oxaliplatin and paclitaxel-induced neuropathy (Alliance A151505). Support Care Cancer. 2016;24:5059–68.

    CrossRef  PubMed  Google Scholar 

  45. Koskinen MJ, Kautio AL, Haanpaa ML, et al. Intraepidermal nerve fibre density in cancer patients receiving adjuvant chemotherapy. Anticancer Res. 2011;31:4413–6.

    CAS  Google Scholar 

  46. Kroigard T, Schroder HD, Qvortrup C, et al. Characterization and diagnostic evaluation of chronic polyneuropathies induced by oxaliplatin and docetaxel comparing skin biopsy to quantitative sensory testing and nerve conduction studies. Eur J Neurol. 2014;21:623–9.

    CAS  CrossRef  Google Scholar 

  47. Velasco R, Navarro X, Gil-Gil M, et al. Neuropathic pain and nerve growth factor in chemotherapy-induced peripheral neuropathy: prospective clinical-pathological study. J Pain Symptom Manag. 2017;54:815–25.

    CrossRef  Google Scholar 

  48. Ventzel L, Madsen CS, Karlsson P, et al. Chronic pain and neuropathy following adjuvant chemotherapy. Pain Med. 2018;19(9):1813–24.

    CrossRef  Google Scholar 

  49. Saad M, Psimaras D, Tafani C, et al. Quick, non-invasive and quantitative assessment of small fiber neuropathy in patients receiving chemotherapy. J Neuro-Oncol. 2016;127:373–80.

    CAS  CrossRef  Google Scholar 

  50. Sharma S, Venkitaraman R, Vas PRJ, et al. Assessment of chemotherapy-induced peripheral neuropathy using the LDI (FLARE) technique: a novel technique to detect neural small fiber dysfunction. Brain Behav. 2015;5:e00354.

    CrossRef  PubMed  Google Scholar 

  51. Lieber S, Blankenburg M, Apel K, et al. Small-fiber neuropathy and pain sensitization in survivors of pediatric acute lymphoblastic leukemia. Eur J Paediatr Neurol. 2018;22(3):457–69.

    CAS  CrossRef  Google Scholar 

  52. Kokotis P, Schmelz M, Kostouros E, et al. Oxaliplatin-induced neuropathy: a long-term clinical and neurophysiologic follow-up study. Clin Colorectal Cancer. 2016;15:e133–40.

    CrossRef  Google Scholar 

  53. Boyette-Davis JA, Cata JP, Driver LC, et al. Persistent chemoneuropathy in patients receiving the plant alkaloids paclitaxel and vincristine. Cancer Chemother Pharmacol. 2013;71:619–26.

    CAS  CrossRef  Google Scholar 

  54. Dermitzakis EV, Kimiskidis VK, Lazaridis G, et al. The impact of paclitaxel and carboplatin chemotherapy on the autonomous nervous system of patients with ovarian cancer. BMC Neurol. 2016;16:190.

    CrossRef  PubMed  Google Scholar 

  55. Weis J, Claeys KG, Roos A, et al. Towards a functional pathology of hereditary neuropathies. Acta Neuropathol. 2017;133:493–515.

    CAS  CrossRef  Google Scholar 

  56. Fledrich R, Mannil M, Leha A, et al. Biomarkers predict outcome in Charcot-Marie-Tooth disease 1A. J Neurol Neurosurg Psychiatry. 2017;88:941–52.

    CrossRef  Google Scholar 

  57. Pisciotta C, Shy ME. Neuropathy. In: Geschwind DH, Paulson HL, Klein C, editors. Handbook of clinical neurology (Neurogenetics, Part II) 2018;148. p. 653–65.

    Google Scholar 

  58. Jerath NU, Shy ME. Hereditary motor and sensory neuropathies: understanding molecular pathogenesis could lead to future treatment strategies. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2015;1852:667–78.

    CAS  CrossRef  Google Scholar 

  59. Li J, Bai Y, Ghandour K, et al. Skin biopsies in myelin-related neuropathies: bringing molecular pathology to the bedside. Brain. 2005;128:1168–77.

    CrossRef  Google Scholar 

  60. Manganelli F, Nolano M, Pisciotta C, et al. Charcot-Marie-Tooth disease: new insights from skin biopsy. Neurology. 2015;85:1202–8.

    CAS  CrossRef  PubMed  Google Scholar 

  61. Katona I, Wu X, Feely SME, et al. PMP22 expression in dermal nerve myelin from patients with CMT1A. Brain. 2009;132:1734–40.

    CrossRef  PubMed  Google Scholar 

  62. Nobbio L, on behalf of the CMT-TRIAAL Group, Visigalli D, et al. PMP22 messenger RNA levels in skin biopsies: testing the effectiveness of a Charcot-Marie-Tooth 1A biomarker. Brain. 2014;137:1614–20.

    CrossRef  Google Scholar 

  63. Soldevilla B, Cuevas-Martin C, Ibanez C, et al. Plasma metabolome and skin proteins in Charcot-Marie-Tooth 1A patients. PLoS One. 2017;12:e0178376.

    CrossRef  PubMed  Google Scholar 

  64. Tavakoli M, Marshall A, Banka S, et al. Corneal confocal microscopy detects small fiber neuropathy in CMT1A patients. Muscle Nerve. 2012;46:698–704.

    CrossRef  PubMed  Google Scholar 

  65. Duchesne M, Danigo A, Richard L, et al. Skin biopsy findings in patients with CMT1A: baseline data from the CLN-PXT3003-01 study provide new insights into the pathophysiology of the disorder. J Neuropathol Exp Neurol. 2018;77:274–81.

    CAS  CrossRef  Google Scholar 

  66. Nolano M, Manganelli F, Provitera V, et al. Small nerve fiber involvement in CMT1A. Neurology. 2015;84:407–14.

    CAS  CrossRef  PubMed  Google Scholar 

  67. Casanova-Molla J, Morales M, Planas-Rigol E, et al. Epidermal Langerhans cells in small fiber neuropathies. Pain. 2012;153:982–9.

    CrossRef  PubMed  Google Scholar 

  68. Hsieh ST, Choi S, Lin WM, et al. Epidermal denervation and its effects on keratinocytes and Langerhans cells. J Neurocytol. 1996;25:513–24.

    CAS  CrossRef  Google Scholar 

  69. Strom A, Bruggemann J, Ziegler I, et al. Pronounced reduction of cutaneous Langerhans cell density in recently diagnosed type 2 diabetes. Diabetes. 2014;63:1148–53.

    CAS  CrossRef  Google Scholar 

  70. Uceyler N, Devigili G, Toyka K, et al. Skin biopsy as an additional diagnostic tool in non-systemic vasculitic neuropathy. Acta Neuropathol. 2010;120:109–16.

    CrossRef  Google Scholar 

  71. Tseng MT, Hsieh SC, Shun CT, et al. Skin denervation and cutaneous vasculitis in systemic lupus erythematosus. Brain. 2006;129:977–85.

    CrossRef  Google Scholar 

  72. Chao CC, Hsieh ST, Shun CT, et al. Skin denervation and cutaneous vasculitis in eosinophilia-associated neuropathy. Arch Neurol. 2007;64:959–65.

    CrossRef  Google Scholar 

  73. Yang NC, Lee MJ, Chao CC, et al. Clinical presentations and skin denervation in amyloid neuropathy due to transthyretin Ala97Ser. Neurology. 2010;75:532–8.

    CAS  CrossRef  Google Scholar 

  74. Chao CC, Huang CM, Chiang HH, et al. Sudomotor innervation in transthyretin amyloid neuropathy: pathology and functional correlates. Ann Neurol. 2015;78:272–83.

    CAS  CrossRef  PubMed  Google Scholar 

  75. Suenaga G, Ikeda T, Masuda T, et al. Inflammatory state exists in familial amyloid polyneuropathy that may be triggered by mutated transthyretin. Sci Rep. 2017;7:1579.

    CrossRef  PubMed  Google Scholar 

  76. Martins D, Moreira J, Goncalves NP, et al. MMP-14 overexpression correlates with the neurodegenerative process in familial amyloidotic polyneuropathy. Dis Model Mech. 2017;10:1253–60.

    CAS  CrossRef  PubMed  Google Scholar 

  77. Waldfogel JM, Nesbit SA, Dy SM, et al. Pharmacotherapy for diabetic peripheral neuropathy pain and quality of life. Neurology. 2017;88:1958–67.

    CAS  CrossRef  Google Scholar 

  78. Coelho T, Maia LF, Martins da Silva A, et al. Tafamidis for transthyretin familial amyloid polyneuropathy: a randomized, controlled trial. Neurology. 2012;79:785–92.

    CAS  CrossRef  PubMed  Google Scholar 

  79. Bakkers M, Faber CG, Hoeijmakers Janneke GJ, et al. Small fibers, large impact: quality of life in small fiber neuropathy. Muscle Nerve. 2013;49:329–36.

    CrossRef  Google Scholar 

  80. Lin MT, Lee LJH, Chao CC, et al. Quality of life in polyneuropathy: association with biomarkers of small fiber impairment. Health Qual Life Outcomes. 2015;13:169.

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Tsang Hsieh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Chao, CC., Pan, CL., Hsieh, ST. (2019). Small Fiber Pathology and Functional Impairment in Syndromes of Predominantly Large Fiber Neuropathy. In: Hsieh, ST., Anand, P., Gibbons, C., Sommer, C. (eds) Small Fiber Neuropathy and Related Syndromes: Pain and Neurodegeneration. Springer, Singapore. https://doi.org/10.1007/978-981-13-3546-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3546-4_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3545-7

  • Online ISBN: 978-981-13-3546-4

  • eBook Packages: MedicineMedicine (R0)