Skip to main content

Amyloid Neuropathy

  • 554 Accesses

Abstract

Amyloid neuropathy is a syndrome of peripheral nerve degeneration associated with deposition of amyloid attributed to various molecular compositions including (1) monoclonal protein of immunoglobulin light chain (AL amyloidosis) and (2) misfolded proteins produced by amyloid-prone genes, in particular, familial amyloid polyneuropathy (FAP) due to transthyretin (TTR) mutations. During the early stage of amyloid neuropathy, small fiber of the nociceptive type is frequently affected. Neuropathy of AL amyloidosis is a chronic hematological disorder. In addition to peripheral nerves, the kidney, liver, and heart are major organs of amyloid deposition resulting in diverse clinical presentations. In AL amyloidosis, progressive polyneuropathy is the most common neurological manifestations while mononeuropathy multiplex is also documented depending on the distribution of amyloid pathology. Since AL amyloidosis is due to B-cell dyscrasia, treatments include (1) a combination of prednisolone and chemotherapy (melphalan) and (2) target therapy of proteasome inhibitor (e.g., bortezomib). TTR-FAP is the most common genotype of FAP compared with other amyloid-producing genes (gelsolin and apolipoprotein A1). There are more than 100 mutations of TTR with variations in geographic and ethnic distributions. For example, V30M is the most common genotype and endemic in certain areas of Portugal and Japan. Small-fiber neuropathy is usually the initial presentation of FAP, including neuropathic pain, loss of protective sensation, and autonomic dysfunctions. Neurological deficits progress to affect large fibers leading to weakness of four limbs and unsteadiness, and many patients became ambulation-dependent or bedridden within a decade depending on the genotypes. In addition to liver transplantation which eliminates the major source of TTR-producing organ, new treatments have emerged that may slow the progression of neurological deficits; these include TTR stabilizers and RNA-based therapies. Hence to identify early biomarkers is the direction of research for slowing disease progression of FAP.

Keywords

  • Amyloidosis
  • β-pleated sheet
  • Light chain immunoglobulin
  • AL amyloidosis
  • Primary systemic amyloidosis
  • Plasma cell dyscrasia
  • Chemotherapy
  • Familial amyloid polyneuropathy (FAP)
  • Familial amyloid cardiomyopathy (FAC)
  • Transthyretin (TTR)
  • Biomarkers
  • Liver transplantation
  • Transthyretin stabilizer
  • Diflunisal
  • Tafamidis
  • RNA interference (RNAi)
  • Antisense oligonucleotide

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-13-3546-4_8
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-981-13-3546-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3

References

  1. Sipe JD, Benson MD, Buxbaum JN, Ikeda SI, Merlini G, Saraiva MJ, et al. Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid. 2016;23:209–13.

    CAS  PubMed  CrossRef  Google Scholar 

  2. Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CC. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol. 1997;273:729–39.

    CAS  PubMed  CrossRef  Google Scholar 

  3. Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, et al. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature. 2007;447:453–7.

    CAS  PubMed  CrossRef  Google Scholar 

  4. Bonar L, Cohen AS, Skinner MM. Characterization of the amyloid fibril as a cross-beta protein. Proc Soc Exp Biol Med. 1969;131:1373–5.

    CAS  PubMed  CrossRef  Google Scholar 

  5. Gillmore JD, Hawkins PN. Pathophysiology and treatment of systemic amyloidosis. Nat Rev Nephrol. 2013;9:574–86.

    CAS  PubMed  CrossRef  Google Scholar 

  6. Wechalekar AD, Gillmore JD, Hawkins PN. Systemic amyloidosis. Lancet. 2016;387:2641–54.

    CAS  PubMed  CrossRef  Google Scholar 

  7. Plante-Bordeneuve V, Said G. Familial amyloid polyneuropathy. Lancet Neurol. 2011;10:1086–97.

    CAS  PubMed  CrossRef  Google Scholar 

  8. Testro AG, Brennan SO, Macdonell RA, Hawkins PN, Angus PW. Hereditary amyloidosis with progressive peripheral neuropathy associated with apolipoprotein AI Gly26Arg: outcome of hepatorenal transplantation. Liver Transpl. 2007;13:1028–31.

    PubMed  CrossRef  Google Scholar 

  9. Rajkumar SV, Gertz MA, Kyle RA. Prognosis of patients with primary systemic amyloidosis who present with dominant neuropathy. Am J Med. 1998;104:232–7.

    CAS  PubMed  CrossRef  Google Scholar 

  10. Gertz MA. Immunoglobulin light chain amyloidosis: 2016 update on diagnosis, prognosis, and treatment. Am J Hematol. 2016;91:947–56.

    CAS  PubMed  CrossRef  Google Scholar 

  11. Kyle RA, Gertz MA. Primary systemic amyloidosis: clinical and laboratory features in 474 cases. Semin Hematol. 1995;32:45–59.

    CAS  PubMed  Google Scholar 

  12. Pinney JH, Smith CJ, Taube JB, Lachmann HJ, Venner CP, Gibbs SD, et al. Systemic amyloidosis in England: an epidemiological study. Br J Haematol. 2013;161:525–32.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  13. Duston MA, Skinner M, Anderson J, Cohen AS. Peripheral neuropathy as an early marker of AL amyloidosis. Arch Intern Med. 1989;149:358–60.

    CAS  PubMed  CrossRef  Google Scholar 

  14. Kelly JJ Jr, Kyle RA, O’Brien PC, Dyck PJ. The natural history of peripheral neuropathy in primary systemic amyloidosis. Ann Neurol. 1979;6:1–7.

    PubMed  CrossRef  Google Scholar 

  15. Matsuda M, Gono T, Morita H, Katoh N, Kodaira M, Ikeda S. Peripheral nerve involvement in primary systemic AL amyloidosis: a clinical and electrophysiological study. Eur J Neurol. 2011;18:604–10.

    CAS  PubMed  CrossRef  Google Scholar 

  16. Vital C, Vital A, Bouillot-Eimer S, Brechenmacher C, Ferrer X, Lagueny A. Amyloid neuropathy: a retrospective study of 35 peripheral nerve biopsies. J Peripher Nerv Syst. 2004;9:232–41.

    PubMed  CrossRef  Google Scholar 

  17. Verghese JP, Bradley WG, Nemni R, McAdam KP. Amyloid neuropathy in multiple myeloma and other plasma cell dyscrasias. A hypothesis of the pathogenesis of amyloid neuropathies. J Neurol Sci. 1983;59:237–46.

    CAS  PubMed  CrossRef  Google Scholar 

  18. Sommer C, Schroder JM. Amyloid neuropathy: immunocytochemical localization of intra- and extracellular immunoglobulin light chains. Acta Neuropathol. 1989;79:190–9.

    CAS  PubMed  CrossRef  Google Scholar 

  19. Gertz MA. Immunoglobulin light chain amyloidosis diagnosis and treatment algorithm 2018. Blood Cancer J. 2018;8:44.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  20. Jones NF, Hilton PJ, Tighe JR, Hobbs JR. Treatment of “primary” renal amyloidosis with melphalan. Lancet. 1972;2:616–9.

    CAS  PubMed  CrossRef  Google Scholar 

  21. Kyle RA, Bayrd ED. Amyloidosis: review of 236 cases. Medicine (Baltimore). 1975;54:271–99.

    CAS  CrossRef  Google Scholar 

  22. Jaccard A, Moreau P, Leblond V, Leleu X, Benboubker L, Hermine O, et al. High-dose melphalan versus melphalan plus dexamethasone for AL amyloidosis. N Engl J Med. 2007;357:1083–93.

    CAS  PubMed  CrossRef  Google Scholar 

  23. Mhaskar R, Kumar A, Behera M, Kharfan-Dabaja MA, Djulbegovic B. Role of high-dose chemotherapy and autologous hematopoietic cell transplantation in primary systemic amyloidosis: a systematic review. Biol Blood Marrow Transplant. 2009;15:893–902.

    CAS  PubMed  CrossRef  Google Scholar 

  24. Mahmood S, Palladini G, Sanchorawala V, Wechalekar A. Update on treatment of light chain amyloidosis. Haematologica. 2014;99:209–21.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  25. Barsottini OG, Arantes A, Sigulem D, Kutner JM, Ribeiro AA, Moura LA, et al. Axoval neuropathy as initial manifestation of primary amyloidosis: report of a case submitted to bone marrow transplantation. Arq Neuropsiquiatr. 2004;62:725–9.

    PubMed  CrossRef  Google Scholar 

  26. Katoh N, Matsuda M, Yoshida T, Yazaki M, Morita H, Sakashita K, et al. Primary AL amyloid polyneuropathy successfully treated with high-dose melphalan followed by autologous stem cell transplantation. Muscle Nerve. 2010;41:138–43.

    CAS  PubMed  CrossRef  Google Scholar 

  27. Vucic S, Chong PS, Cros D. Atypical presentations of primary amyloid neuropathy. Muscle Nerve. 2003;28:696–702.

    PubMed  CrossRef  Google Scholar 

  28. Raz A, Goodman DS. The interaction of thyroxine with human plasma prealbumin and with the prealbumin-retinol-binding protein complex. J Biol Chem. 1969;244:3230–7.

    CAS  PubMed  Google Scholar 

  29. Andrade C. A peculiar form of peripheral neuropathy; familiar atypical generalized amyloidosis with special involvement of the peripheral nerves. Brain. 1952;75:408–27.

    CAS  PubMed  CrossRef  Google Scholar 

  30. Araki S, Mawatari S, Ohta M, Nakajima A, Kuroiwa Y. Polyneuritic amyloidosis in a Japanese family. Arch Neurol. 1968;18:593–602.

    CAS  PubMed  CrossRef  Google Scholar 

  31. Andersson R. Familial amyloidosis with polyneuropathy. A clinical study based on patients living in northern Sweden. Acta Med Scand Suppl. 1976;590:1–64.

    CAS  PubMed  Google Scholar 

  32. Kabat EA, Moore DH, Landow H. An Electrophoretic study of the protein components in cerebrospinal fluid and their relationship to the serum proteins. J Clin Invest. 1942;21:571–7.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  33. Fleming CE, Mar FM, Franquinho F, Sousa MM. Chapter 17: transthyretin: an enhancer of nerve regeneration. Int Rev Neurobiol. 2009;87:337–46.

    CAS  PubMed  CrossRef  Google Scholar 

  34. Aleshire SL, Bradley CA, Richardson LD, Parl FF. Localization of human prealbumin in choroid plexus epithelium. J Histochem Cytochem. 1983;31:608–12.

    CAS  PubMed  CrossRef  Google Scholar 

  35. Jacobsson B, Collins VP, Grimelius L, Pettersson T, Sandstedt B, Carlstrom A. Transthyretin immunoreactivity in human and porcine liver, choroid plexus, and pancreatic islets. J Histochem Cytochem. 1989;37:31–7.

    CAS  PubMed  CrossRef  Google Scholar 

  36. Episkopou V, Maeda S, Nishiguchi S, Shimada K, Gaitanaris GA, Gottesman ME, et al. Disruption of the transthyretin gene results in mice with depressed levels of plasma retinol and thyroid hormone. Proc Natl Acad Sci U S A. 1993;90:2375–9.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  37. Blake CC, Geisow MJ, Oatley SJ, Rerat B, Rerat C. Structure of prealbumin: secondary, tertiary and quaternary interactions determined by Fourier refinement at 1.8 A. J Mol Biol. 1978;121:339–56.

    CAS  PubMed  CrossRef  Google Scholar 

  38. Blake CC, Burridge JM, Oatley SJ. X-ray analysis of thyroid hormone binding to prealbumin. Biochem Soc Trans. 1978;6:1114–8.

    CAS  PubMed  CrossRef  Google Scholar 

  39. Sekijima Y. Transthyretin (ATTR) amyloidosis: clinical spectrum, molecular pathogenesis and disease-modifying treatments. J Neurol Neurosurg Psychiatry. 2015;86:1036–43.

    PubMed  CrossRef  Google Scholar 

  40. Richardson SJ, Bradley AJ, Duan W, Wettenhall RE, Harms PJ, Babon JJ, et al. Evolution of marsupial and other vertebrate thyroxine-binding plasma proteins. Am J Phys. 1994;266:R1359–70.

    CAS  Google Scholar 

  41. Tsuzuki T, Mita S, Maeda S, Araki S, Shimada K. Structure of the human prealbumin gene. J Biol Chem. 1985;260:12224–7.

    CAS  PubMed  Google Scholar 

  42. Ando Y, Nakamura M, Araki S. Transthyretin-related familial amyloidotic polyneuropathy. Arch Neurol. 2005;62:1057–62.

    PubMed  CrossRef  Google Scholar 

  43. Uemichi T, Liepnieks JJ, Benson MD. A trinucleotide deletion in the transthyretin gene (delta V 122) in a kindred with familial amyloidotic polyneuropathy. Neurology. 1997;48:1667–70.

    CAS  PubMed  CrossRef  Google Scholar 

  44. Skare J, Yazici H, Erken E, Dede H, Cohen A, Milunsky A, et al. Homozygosity for the met30 transthyretin gene in a Turkish kindred with familial amyloidotic polyneuropathy. Hum Genet. 1990;86:89–90.

    CAS  PubMed  CrossRef  Google Scholar 

  45. Yoshinaga T, Nakazato M, Ikeda S, Ohnishi A. Homozygosity for the transthyretin-Met30 gene in three Japanese siblings with type I familial amyloidotic polyneuropathy. Neurology. 1992;42:2045–7.

    CAS  PubMed  CrossRef  Google Scholar 

  46. Quintas A, Vaz DC, Cardoso I, Saraiva MJ, Brito RM. Tetramer dissociation and monomer partial unfolding precedes protofibril formation in amyloidogenic transthyretin variants. J Biol Chem. 2001;276:27207–13.

    CAS  PubMed  CrossRef  Google Scholar 

  47. Hammarstrom P, Wiseman RL, Powers ET, Kelly JW. Prevention of transthyretin amyloid disease by changing protein misfolding energetics. Science. 2003;299:713–6.

    PubMed  CrossRef  CAS  Google Scholar 

  48. Colon W, Kelly JW. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry. 1992;31:8654–60.

    CAS  PubMed  CrossRef  Google Scholar 

  49. Schneider F, Hammarstrom P, Kelly JW. Transthyretin slowly exchanges subunits under physiological conditions: a convenient chromatographic method to study subunit exchange in oligomeric proteins. Protein Sci. 2001;10:1606–13.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  50. Chung CM, Connors LH, Benson MD, Walsh MT. Biophysical analysis of normal transthyretin: implications for fibril formation in senile systemic amyloidosis. Amyloid. 2001;8:75–83.

    CAS  PubMed  CrossRef  Google Scholar 

  51. Ferrao-Gonzales AD, Palmieri L, Valory M, Silva JL, Lashuel H, Kelly JW, et al. Hydration and packing are crucial to amyloidogenesis as revealed by pressure studies on transthyretin variants that either protect or worsen amyloid disease. J Mol Biol. 2003;328:963–74.

    CAS  PubMed  CrossRef  Google Scholar 

  52. Sekijima Y, Hammarstrom P, Matsumura M, Shimizu Y, Iwata M, Tokuda T, et al. Energetic characteristics of the new transthyretin variant A25T may explain its atypical central nervous system pathology. Lab Invest. 2003;83:409–17.

    CAS  PubMed  CrossRef  Google Scholar 

  53. Shnyrov VL, Villar E, Zhadan GG, Sanchez-Ruiz JM, Quintas A, Saraiva MJ, et al. Comparative calorimetric study of non-amyloidogenic and amyloidogenic variants of the homotetrameric protein transthyretin. Biophys Chem. 2000;88:61–7.

    CAS  PubMed  CrossRef  Google Scholar 

  54. Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature. 2002;416:507–11.

    CAS  PubMed  CrossRef  Google Scholar 

  55. Hou X, Richardson SJ, Aguilar MI, Small DH. Binding of amyloidogenic transthyretin to the plasma membrane alters membrane fluidity and induces neurotoxicity. Biochemistry. 2005;44:11618–27.

    CAS  PubMed  CrossRef  Google Scholar 

  56. Sousa MM, Cardoso I, Fernandes R, Guimaraes A, Saraiva MJ. Deposition of transthyretin in early stages of familial amyloidotic polyneuropathy: evidence for toxicity of nonfibrillar aggregates. Am J Pathol. 2001;159:1993–2000.

    CAS  PubMed  CrossRef  Google Scholar 

  57. Reixach N, Deechongkit S, Jiang X, Kelly JW, Buxbaum JN. Tissue damage in the amyloidoses: transthyretin monomers and nonnative oligomers are the major cytotoxic species in tissue culture. Proc Natl Acad Sci U S A. 2004;101:2817–22.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  58. Nagasaka T. Familial amyloidotic polyneuropathy and transthyretin. Subcell Biochem. 2012;65:565–607.

    CAS  PubMed  CrossRef  Google Scholar 

  59. Hou X, Parkington HC, Coleman HA, Mechler A, Martin LL, Aguilar MI, et al. Transthyretin oligomers induce calcium influx via voltage-gated calcium channels. J Neurochem. 2007;100:446–57.

    CAS  PubMed  CrossRef  Google Scholar 

  60. Nakazato M, Shiomi K, Miyazato M, Matsukura S. Type I familial amyloidotic polyneuropathy in Japan. Intern Med. 1992;31:1335–8.

    CAS  PubMed  CrossRef  Google Scholar 

  61. Yang NC, Lee MJ, Chao CC, Chuang YT, Lin WM, Chang MF, et al. Clinical presentations and skin denervation in amyloid neuropathy due to transthyretin Ala97Ser. Neurology. 2010;75:532–8.

    CAS  PubMed  CrossRef  Google Scholar 

  62. Sousa A, Coelho T, Barros J, Sequeiros J. Genetic epidemiology of familial amyloidotic polyneuropathy (FAP)-type I in Povoa do Varzim and Vila do Conde (north of Portugal). Am J Med Genet. 1995;60:512–21.

    CAS  PubMed  CrossRef  Google Scholar 

  63. Holmgren G, Costa PM, Andersson C, Asplund K, Steen L, Beckman L, et al. Geographical distribution of TTR met30 carriers in northern Sweden: discrepancy between carrier frequency and prevalence rate. J Med Genet. 1994;31:351–4.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  64. Misu K, Hattori N, Nagamatsu M, Ikeda S, Ando Y, Nakazato M, et al. Late-onset familial amyloid polyneuropathy type I (transthyretin Met30-associated familial amyloid polyneuropathy) unrelated to endemic focus in Japan. Clinicopathological and genetic features. Brain. 1999;122:1951–62.

    PubMed  CrossRef  Google Scholar 

  65. Plante-Bordeneuve V, Kerschen P. Transthyretin familial amyloid polyneuropathy. Handb Clin Neurol. 2013;115:643–58.

    CAS  PubMed  CrossRef  Google Scholar 

  66. Benson MD, Cohen AS. Generalized amyloid in a family of Swedish origin. A study of 426 family members in seven generations of a new kinship with neuropathy, nephropathy, and central nervous system involvement. Ann Intern Med. 1977;86:419–24.

    CAS  PubMed  CrossRef  Google Scholar 

  67. Blanco-Jerez CR, Jimenez-Escrig A, Gobernado JM, Lopez-Calvo S, de Blas G, Redondo C, et al. Transthyretin Tyr77 familial amyloid polyneuropathy: a clinicopathological study of a large kindred. Muscle Nerve. 1998;21:1478–85.

    CAS  PubMed  CrossRef  Google Scholar 

  68. Obayashi K, Ando Y. Focus on autonomic dysfunction in familial amyloidotic polyneuropathy (FAP). Amyloid. 2012;19(Suppl 1):28–9.

    PubMed  CrossRef  Google Scholar 

  69. Koike H, Misu K, Ikeda S, Ando Y, Nakazato M, Ando E, et al. Type I (transthyretin Met30) familial amyloid polyneuropathy in Japan: early- vs late-onset form. Arch Neurol. 2002;59:1771–6.

    PubMed  CrossRef  Google Scholar 

  70. Chao CC, Huang CM, Chiang HH, Luo KR, Kan HW, Yang NC, et al. Sudomotor innervation in transthyretin amyloid neuropathy: pathology and functional correlates. Ann Neurol. 2015;78:272–83.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  71. Mariani LL, Lozeron P, Theaudin M, Mincheva Z, Signate A, Ducot B, et al. Genotype-phenotype correlation and course of transthyretin familial amyloid polyneuropathies in France. Ann Neurol. 2015;78:901–16.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  72. Plante-Bordeneuve V, Ferreira A, Lalu T, Zaros C, Lacroix C, Adams D, et al. Diagnostic pitfalls in sporadic transthyretin familial amyloid polyneuropathy (TTR-FAP). Neurology. 2007;69:693–8.

    CAS  PubMed  CrossRef  Google Scholar 

  73. Sattianayagam PT, Hahn AF, Whelan CJ, Gibbs SD, Pinney JH, Stangou AJ, et al. Cardiac phenotype and clinical outcome of familial amyloid polyneuropathy associated with transthyretin alanine 60 variant. Eur Heart J. 2012;33:1120–7.

    CAS  PubMed  CrossRef  Google Scholar 

  74. Benson MD, Kincaid JC. The molecular biology and clinical features of amyloid neuropathy. Muscle Nerve. 2007;36:411–23.

    CAS  PubMed  CrossRef  Google Scholar 

  75. Conceicao IM, Castro JF, Scotto M, de Carvalho M. Neurophysiological markers in familial amyloid polyneuropathy patients: early changes. Clin Neurophysiol. 2008;119:1082–7.

    PubMed  CrossRef  Google Scholar 

  76. Koike H, Tanaka F, Hashimoto R, Tomita M, Kawagashira Y, Iijima M, et al. Natural history of transthyretin Val30Met familial amyloid polyneuropathy: analysis of late-onset cases from non-endemic areas. J Neurol Neurosurg Psychiatry. 2012;83:152–8.

    PubMed  CrossRef  Google Scholar 

  77. Heldestad V, Nordh E. Quantified sensory abnormalities in early genetically verified transthyretin amyloid polyneuropathy. Muscle Nerve. 2007;35:189–95.

    CAS  PubMed  CrossRef  Google Scholar 

  78. Hofer PA, Anderson R. Postmortem findings in primary familial amyloidosis with polyneuropathy. Acta Pathol Microbiol Scand A. 1975;83:309–22.

    CAS  PubMed  Google Scholar 

  79. Sobue G, Nakao N, Murakami K, Yasuda T, Sahashi K, Mitsuma T, et al. Type I familial amyloid polyneuropathy. A pathological study of the peripheral nervous system. Brain. 1990;113:903–19.

    PubMed  CrossRef  Google Scholar 

  80. Koike H, Misu K, Sugiura M, Iijima M, Mori K, Yamamoto M, et al. Pathology of early- vs late-onset TTR Met30 familial amyloid polyneuropathy. Neurology. 2004;63:129–38.

    CAS  PubMed  CrossRef  Google Scholar 

  81. Ericzon BG, Wilczek HE, Larsson M, Wijayatunga P, Stangou A, Pena JR, et al. Liver transplantation for hereditary transthyretin amyloidosis: after 20 years still the best therapeutic alternative? Transplantation. 2015;99:1847–54.

    CAS  PubMed  CrossRef  Google Scholar 

  82. Coelho T, Maia LF, Martins da Silva A, Waddington Cruz M, Plante-Bordeneuve V, Lozeron P, et al. Tafamidis for transthyretin familial amyloid polyneuropathy: a randomized, controlled trial. Neurology. 2012;79:785–92.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  83. Coelho T, Maia LF, da Silva AM, Cruz MW, Plante-Bordeneuve V, Suhr OB, et al. Long-term effects of tafamidis for the treatment of transthyretin familial amyloid polyneuropathy. J Neurol. 2013;260:2802–14.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  84. Merlini G, Plante-Bordeneuve V, Judge DP, Schmidt H, Obici L, Perlini S, et al. Effects of tafamidis on transthyretin stabilization and clinical outcomes in patients with non-Val30Met transthyretin amyloidosis. J Cardiovasc Transl Res. 2013;6:1011–20.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  85. Adams D, Suhr OB, Hund E, Obici L, Tournev I, Campistol JM, et al. First European consensus for diagnosis, management, and treatment of transthyretin familial amyloid polyneuropathy. Curr Opin Neurol. 2016;29(Suppl 1):S14–26.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  86. Sekijima Y, Dendle MA, Kelly JW. Orally administered diflunisal stabilizes transthyretin against dissociation required for amyloidogenesis. Amyloid. 2006;13:236–49.

    CAS  PubMed  CrossRef  Google Scholar 

  87. Miller SR, Sekijima Y, Kelly JW. Native state stabilization by NSAIDs inhibits transthyretin amyloidogenesis from the most common familial disease variants. Lab Invest. 2004;84:545–52.

    CAS  PubMed  CrossRef  Google Scholar 

  88. Berk JL, Suhr OB, Obici L, Sekijima Y, Zeldenrust SR, Yamashita T, et al. Repurposing diflunisal for familial amyloid polyneuropathy: a randomized clinical trial. JAMA. 2013;310:2658–67.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  89. Sekijima Y, Tojo K, Morita H, Koyama J, Ikeda S. Safety and efficacy of long-term diflunisal administration in hereditary transthyretin (ATTR) amyloidosis. Amyloid. 2015;22:79–83.

    CAS  PubMed  CrossRef  Google Scholar 

  90. Adams D, Gonzalez-Duarte A, O’Riordan WD, Yang CC, Ueda M, Kristen AV, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med. 2018;379:11–21.

    CAS  PubMed  CrossRef  Google Scholar 

  91. Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ, Wang AK, et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med. 2018;379:22–31.

    CAS  PubMed  CrossRef  Google Scholar 

  92. Buxbaum JN. Oligonucleotide drugs for transthyretin amyloidosis. N Engl J Med. 2018;379:82–5.

    PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Chao Chao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Chao, CC., Kan, HW., Yeh, TY., Cheng, YY., Hsieh, ST. (2019). Amyloid Neuropathy. In: Hsieh, ST., Anand, P., Gibbons, C., Sommer, C. (eds) Small Fiber Neuropathy and Related Syndromes: Pain and Neurodegeneration. Springer, Singapore. https://doi.org/10.1007/978-981-13-3546-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3546-4_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3545-7

  • Online ISBN: 978-981-13-3546-4

  • eBook Packages: MedicineMedicine (R0)