Skip to main content

Autonomic Testing and Nerve Fiber Pathology

  • 540 Accesses

Abstract

The autonomic nervous system is a diffuse, complicated component of both the peripheral and central nervous system. Due to the extensive innervation of most organs, there are a number of different techniques that have been developed to study the autonomic nervous system. For the purposes of this review, we will focus on tests performed by neurologists, although many additional tests of autonomic function exist across various specialties. The autonomic function tests performed by neurologists typically encompass three major domains of physiological measurement: (1) measurement of parasympathetic cholinergic cardiovagal function, (2) measurement of sympathetic adrenergic vasomotor function, and (3) measurement of sympathetic cholinergic sudomotor function. These tests of autonomic physiology help to localize the lesion within the autonomic nervous system and hence will aid in the differential diagnosis. Autonomic function testing is a recommended part of polyneuropathy screening in individuals with symptoms of autonomic dysfunction. A combination of different autonomic function tests provides a higher sensitivity and specificity than a single measure. In addition to a diagnosis of sympathetic adrenergic, sympathetic cholinergic, or parasympathetic dysfunction, tilt table testing can confirm the presence of orthostatic or delayed orthostatic hypotension, postural tachycardia syndrome, and neurally mediated syncope. Recently, the expansion of the skin biopsy technique to include evaluation of somatic nociceptive C-fibers and autonomic sudomotor, pilomotor, and vasomotor fibers has improved our ability to define a structural autonomic abnormality. Although the methods to quantify the density of autonomic fibers within skin biopsies are still in evolution, substantial progress has been made in understanding the structural and functional correlates of disease.

Keywords

  • Heart rate variability
  • Valsalva maneuver
  • Tilting table
  • Acting standing test
  • Sympathetic skin response
  • Quantitative sudomotor axon reflex testing (QSART)
  • Thermoregulatory sweat test
  • Skin biopsy
  • Intraepidermal nerve fiber density
  • Sweat gland nerve fiber density
  • Pilomotor nerve

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-13-3546-4_5
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-981-13-3546-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2
Fig. 5.3
Fig. 5.4
Fig. 5.5
Fig. 5.6

References

  1. Daube JR, Rubin DI, editors. Clinical neurophysiology. New York: Oxford University Press; 2009.

    Google Scholar 

  2. Katona PG, Jih F. Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control. J Appl Physiol. 1975;39:801–5.

    CAS  CrossRef  Google Scholar 

  3. Bennett T, Fentem PH, Fitton D, Hampton JR, Hosking DJ, Riggott PA. Assessment of vagal control of the heart in diabetes. Measures of R-R interval variation under different conditions. Br Heart J. 1977;39:25–8.

    CAS  CrossRef  Google Scholar 

  4. Pfeifer MA, Cook D, Brodsky J, Tice D, Reenan A, Swedine S, et al. Quantitative evaluation of cardiac parasympathetic activity in normal and diabetic man. Diabetes. 1982;31:339–45.

    CAS  CrossRef  Google Scholar 

  5. Low PA, Benarroch EE, editors. Clinical autonomic disorders. New York: Wolters Kluwer; 2009.

    Google Scholar 

  6. Bennett T, Farquhar IK, Hosking DJ, Hampton JR. Assessment of methods for estimating autonomic nervous control of the heart in patients with diabetes mellitus. Diabetes. 1978;27:1167–74.

    CAS  CrossRef  Google Scholar 

  7. Novak P. Quantitative autonomic testing. J Vis Exp. 2011;53:2502.

    Google Scholar 

  8. Lacroix D, Logier R, Kacet S, Hazard JR, Dagano J, Lekieffre J. Effects of consecutive administration of central and peripheral anticholinergic agents on respiratory sinus arrhythmia in normal subjects. J Auton Nerv Syst. 1992;39:211–7.

    CAS  CrossRef  Google Scholar 

  9. Wang J, Wang X, Irnaten M, Venkatesan P, Evans C, Baxi S, et al. Endogenous acetylcholine and nicotine activation enhances GABAergic and glycinergic inputs to cardiac vagal neurons. J Neurophysiol. 2003;89:2473–81.

    CAS  CrossRef  Google Scholar 

  10. Low PA, Opfer-Gehrking TL. Differential effects of amitriptyline on sudomotor, cardiovagal, and adrenergic function in human subjects. Muscle Nerve. 1992;15:1340–4.

    CAS  CrossRef  Google Scholar 

  11. Davidson J, Watkins L, Owens M, Krulewicz S, Connor K, Carpenter D, et al. Effects of paroxetine and venlafaxine XR on heart rate variability in depression. J Clin Psychopharmacol. 2005;25:480–4.

    CAS  CrossRef  Google Scholar 

  12. Pstras L, Thomaseth K, Waniewski J, Balzani I, Bellavere F. The Valsalva manoeuvre: physiology and clinical examples. Acta Physiol (Oxf). 2016;217:103–19.

    CAS  CrossRef  Google Scholar 

  13. Korner PI, Tonkin AM, Uther JB. Reflex and mechanical circulatory effects of graded Valsalva maneuvers in normal man. J Appl Physiol. 1976;40:434–40.

    CAS  CrossRef  Google Scholar 

  14. Freeman R. Assessment of cardiovascular autonomic function. Clin Neurophysiol. 2006;117:716–30.

    CrossRef  Google Scholar 

  15. Jones PK, Gibbons CH. The role of autonomic testing in syncope. Auton Neurosci. 2014;184:40–5.

    CrossRef  Google Scholar 

  16. Benarroch E, editor. Autonomic neurology. New York: Oxford University Press; 2014.

    Google Scholar 

  17. Vogel ER, Sandroni P, Low PA. Blood pressure recovery from Valsalva maneuver in patients with autonomic failure. Neurology. 2005;65:1533–7.

    CrossRef  Google Scholar 

  18. Sandroni P, Benarroch EE, Low PA. Pharmacological dissection of components of the Valsalva maneuver in adrenergic failure. J Appl Physiol (1985). 1991;71:1563–7.

    CAS  CrossRef  Google Scholar 

  19. Palamarchuk IS, Baker J, Kimpinski K. The utility of Valsalva maneuver in the diagnoses of orthostatic disorders. Am J Physiol Regul Integr Comp Physiol. 2016;310:R243–52.

    CrossRef  Google Scholar 

  20. Saal DP, Thijs RD, van Dijk JG. Tilt table testing in neurology and clinical neurophysiology. Clin Neurophysiol. 2016;127:1022–30.

    CAS  CrossRef  Google Scholar 

  21. Wieling W, Krediet CT, van Dijk N, Linzer M, Tschakovsky ME. Initial orthostatic hypotension: review of a forgotten condition. Clin Sci (Lond). 2007;112:157–65.

    CrossRef  Google Scholar 

  22. Fitzpatrick AP, Theodorakis G, Vardas P, Sutton R. Methodology of head-up tilt testing in patients with unexplained syncope. J Am Coll Cardiol. 1991;17:125–30.

    CAS  CrossRef  Google Scholar 

  23. Freeman R, Wieling W, Axelrod FB, Benditt DG, Benarroch E, Biaggioni I, et al. Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Auton Neurosci. 2011;161:46–8.

    CrossRef  Google Scholar 

  24. Gibbons CH, Freeman R. Delayed orthostatic hypotension: a frequent cause of orthostatic intolerance. Neurology. 2006;67:28–32.

    CrossRef  Google Scholar 

  25. Gibbons CH, Freeman R. Clinical implications of delayed orthostatic hypotension: a 10-year follow-up study. Neurology. 2015;85:1362–7.

    CrossRef  Google Scholar 

  26. Smith JJ, Porth CM, Erickson M. Hemodynamic response to the upright posture. J Clin Pharmacol. 1994;34:375–86.

    CAS  CrossRef  Google Scholar 

  27. Kucera P, Goldenberg Z, Kurca E. Sympathetic skin response: review of the method and its clinical use. Bratisl Lek Listy. 2004;105:108–16.

    CAS  PubMed  Google Scholar 

  28. Shahani BT, Halperin JJ, Boulu P, Cohen J. Sympathetic skin response – a method of assessing unmyelinated axon dysfunction in peripheral neuropathies. J Neurol Neurosurg Psychiatry. 1984;47:536–42.

    CAS  CrossRef  Google Scholar 

  29. Seto-Poon M, Madronio M, Kirkness JP, Amis TC, Byth K, Lim CL. Decrement of the skin conductance response to repeated volitional inspiration. Clin Neurophysiol. 2005;116:1172–80.

    CrossRef  Google Scholar 

  30. Drory VE, Korczyn AD. Sympathetic skin response: age effect. Neurology. 1993;43:1818–20.

    CAS  CrossRef  Google Scholar 

  31. Lanctin C, Magot A, Chambellan A, Tich SN, Pereon Y. Respiratory evoked potentials and occlusion elicited sympathetic skin response. Neurophysiol Clin. 2005;35:119–25.

    CrossRef  Google Scholar 

  32. Huang YN, Jia ZR, Shi X, Sun XR. Value of sympathetic skin response test in the early diagnosis of diabetic neuropathy. Chin Med J (Engl). 2004;117:1317–20.

    Google Scholar 

  33. Low VA, Sandroni P, Fealey RD, Low PA. Detection of small-fiber neuropathy by sudomotor testing. Muscle Nerve. 2006;34:57–61.

    CrossRef  Google Scholar 

  34. Tobin K, Giuliani MJ, Lacomis D. Comparison of different modalities for detection of small fiber neuropathy. Clin Neurophysiol. 1999;110:1909–12.

    CAS  CrossRef  Google Scholar 

  35. Stewart JD, Low PA, Fealey RD. Distal small fiber neuropathy: results of tests of sweating and autonomic cardiovascular reflexes. Muscle Nerve. 1992;15:661–5.

    CAS  CrossRef  Google Scholar 

  36. Kamel JT, Vogrin SJ, Knight-Sadler RJ, Willems NK, Seiderer L, Cook MJ, et al. Combining cutaneous silent periods with quantitative sudomotor axon reflex testing in the assessment of diabetic small fiber neuropathy. Clin Neurophysiol. 2015;126:1047–53.

    CAS  CrossRef  Google Scholar 

  37. Berger MJ, Kimpinski K. Test-retest reliability of quantitative sudomotor axon reflex testing. J Clin Neurophysiol. 2013;30:308–12.

    CrossRef  Google Scholar 

  38. Fealey RD, Low PA, Thomas JE. Thermoregulatory sweating abnormalities in diabetes mellitus. Mayo Clin Proc. 1989;64:617–28.

    CAS  CrossRef  Google Scholar 

  39. Coon EA, Fealey RD, Sletten DM, Mandrekar JN, Benarroch EE, Sandroni P, et al. Anhidrosis in multiple system atrophy involves pre- and postganglionic sudomotor dysfunction. Mov Disord. 2017;32:397–404.

    CAS  CrossRef  Google Scholar 

  40. Cohen J, Low P, Fealey R, Sheps S, Jiang NS. Somatic and autonomic function in progressive autonomic failure and multiple system atrophy. Ann Neurol. 1987;22:692–9.

    CAS  CrossRef  Google Scholar 

  41. Lauria G, Bakkers M, Schmitz C, Lombardi R, Penza P, Devigili G, et al. Intraepidermal nerve fiber density at the distal leg: a worldwide normative reference study. J Peripher Nerv Syst. 2010;15:202–7.

    CrossRef  Google Scholar 

  42. Nolano M, Biasiotta A, Lombardi R, Provitera V, Stancanelli A, Caporaso G, et al. Epidermal innervation morphometry by immunofluorescence and bright-field microscopy. J Peripher Nerv Syst. 2015;20:387–91.

    CAS  CrossRef  Google Scholar 

  43. Lauria G, Hsieh ST, Johansson O, Kennedy WR, Leger JM, Mellgren SI, et al. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. Eur J Neurol. 2010;17:903–12, e44–9.

    CAS  CrossRef  Google Scholar 

  44. McArthur JC, Stocks EA, Hauer P, Cornblath DR, Griffin JW. Epidermal nerve fiber density: normative reference range and diagnostic efficiency. Arch Neurol. 1998;55:1513–20.

    CAS  CrossRef  Google Scholar 

  45. Gibbons CH, Illigens BM, Wang N, Freeman R. Quantification of sweat gland innervation: a clinical-pathologic correlation. Neurology. 2009;72:1479–86.

    CrossRef  Google Scholar 

  46. Luo KR, Chao CC, Hsieh PC, Lue JH, Hsieh ST. Effect of glycemic control on sudomotor denervation in type 2 diabetes. Diabetes Care. 2012;35:612–6.

    CrossRef  Google Scholar 

  47. Luo KR, Chao CC, Chen YT, Huang CM, Yang NC, Kan HW, et al. Quantitation of sudomotor innervation in skin biopsies of patients with diabetic neuropathy. J Neuropathol Exp Neurol. 2011;70:930–8.

    CrossRef  Google Scholar 

  48. Gibbons CH, Illigens BM, Wang N, Freeman R. Quantification of sudomotor innervation: a comparison of three methods. Muscle Nerve. 2010;42:112–9.

    CrossRef  Google Scholar 

  49. Nolano M, Provitera V, Estraneo A, Selim MM, Caporaso G, Stancanelli A, et al. Sensory deficit in Parkinson’s disease: evidence of a cutaneous denervation. Brain. 2008;131:1903–11.

    CrossRef  Google Scholar 

  50. Nolano M, Provitera V, Caporaso G, Stancanelli A, Vitale DF, Santoro L. Quantification of pilomotor nerves: a new tool to evaluate autonomic involvement in diabetes. Neurology. 2010;75:1089–97.

    CAS  CrossRef  Google Scholar 

  51. Gibbons CH, Wang N, Freeman R. Capsaicin induces degeneration of cutaneous autonomic nerve fibers. Ann Neurol. 2010;68:888–98.

    CrossRef  Google Scholar 

  52. Siepmann T, Illigens B, Gibbons C, Freeman R. The quantitative pilomotor axon-reflex test (QPART)-A technique to assess autonomic nerve fiber function (P05.197). Neurology. 2012;78(Meeting Abstracts 1):P05.197.

    CrossRef  Google Scholar 

  53. Donadio V, Incensi A, Giannoccaro MP, Cortelli P, Di Stasi V, Pizza F, et al. Peripheral autonomic neuropathy: diagnostic contribution of skin biopsy. J Neuropathol Exp Neurol. 2012;71:1000–8.

    CrossRef  Google Scholar 

  54. Nolano M, Provitera V, Perretti A, Stancanelli A, Saltalamacchia AM, Donadio V, et al. Ross syndrome: a rare or a misknown disorder of thermoregulation? A skin innervation study on 12 subjects. Brain. 2006;129:2119–31.

    CrossRef  Google Scholar 

  55. McArthur JC, Griffin JW. Another tool for the neurologist’s toolbox. Ann Neurol. 2005;57:163–7.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher H. Gibbons .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Abuzinadah, A.R., Gibbons, C.H. (2019). Autonomic Testing and Nerve Fiber Pathology. In: Hsieh, ST., Anand, P., Gibbons, C., Sommer, C. (eds) Small Fiber Neuropathy and Related Syndromes: Pain and Neurodegeneration. Springer, Singapore. https://doi.org/10.1007/978-981-13-3546-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3546-4_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3545-7

  • Online ISBN: 978-981-13-3546-4

  • eBook Packages: MedicineMedicine (R0)