Backonja MM, Walk D, Edwards RR, Sehgal N, Moeller-Bertram T, Wasan A, et al. Quantitative sensory testing in measurement of neuropathic pain phenomena and other sensory abnormalities. Clin J Pain. 2009;25:641–7.
CrossRef
Google Scholar
Rolke R, Baron R, Maier C, Tolle TR, Treede RD, Beyer A, et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values. Pain. 2006;123:231–43.
CAS
CrossRef
Google Scholar
Dyck PJ, Zimmerman IR, O’Brien PC, Ness A, Caskey PE, Karnes J, et al. Introduction of automated systems to evaluate touch-pressure, vibration, and thermal cutaneous sensation in man. Ann Neurol. 1978;4:502–10.
CAS
CrossRef
Google Scholar
Backonja MM, Attal N, Baron R, Bouhassira D, Drangholt M, Dyck PJ, et al. Value of quantitative sensory testing in neurological and pain disorders: NeuPSIG consensus. Pain. 2013;154:1807–19.
CrossRef
Google Scholar
Rolke R, Baron R, Maier C, Tölle TR, Treede RD, Beyer A, et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values. Pain. 2006;123:231–43.
CAS
CrossRef
Google Scholar
Maier C, Baron R, Tolle TR, Binder A, Birbaumer N, Birklein F, et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain. 2010;150:439–50.
CAS
CrossRef
Google Scholar
Baron R, Maier C, Attal N, Binder A, Bouhassira D, Cruccu G, et al. Peripheral neuropathic pain: a mechanism-related organizing principle based on sensory profiles. Pain. 2017;158:261–72.
CrossRef
Google Scholar
Demant DT, Lund K, Vollert J, Maier C, Segerdahl M, Finnerup NB, et al. The effect of oxcarbazepine in peripheral neuropathic pain depends on pain phenotype: a randomised, double-blind, placebo-controlled phenotype-stratified study. Pain. 2014;155:2263–73.
CAS
CrossRef
Google Scholar
Claus D, Hilz MJ, Hummer I, Neundorfer B. Methods of measurement of thermal thresholds. Acta Neurol Scand. 1987;76:288–96.
CAS
CrossRef
Google Scholar
Rolke R, Magerl W, Campbell KA, Schalber C, Caspari S, Birklein F, et al. Quantitative sensory testing: a comprehensive protocol for clinical trials. Eur J Pain. 2006;10:77–88.
CAS
CrossRef
Google Scholar
Rolke R, Andrews Campbell K, Magerl W, Treede RD. Deep pain thresholds in the distal limbs of healthy human subjects. Eur J Pain. 2005;9:39–48.
CAS
CrossRef
Google Scholar
Magerl W, Krumova EK, Baron R, Tolle T, Treede RD, Maier C. Reference data for quantitative sensory testing (QST): refined stratification for age and a novel method for statistical comparison of group data. Pain. 2010;151:598–605.
CrossRef
Google Scholar
Pfau DB, Krumova EK, Treede RD, Baron R, Toelle T, Birklein F, et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): reference data for the trunk and application in patients with chronic postherpetic neuralgia. Pain. 2014;155:1002–15.
CrossRef
Google Scholar
Blankenburg M, Boekens H, Hechler T, Maier C, Krumova E, Scherens A, et al. Reference values for quantitative sensory testing in children and adolescents: developmental and gender differences of somatosensory perception. Pain. 2010;149:76–88.
CAS
CrossRef
Google Scholar
Vollert J, Mainka T, Baron R, Enax-Krumova EK, Hullemann P, Maier C, et al. Quality assurance for Quantitative Sensory Testing laboratories: development and validation of an automated evaluation tool for the analysis of declared healthy samples. Pain. 2015;156:2423–30.
CrossRef
Google Scholar
Heldestad V, Wiklund U, Hornsten R, Obayashi K, Suhr OB, Nordh E. Comparison of quantitative sensory testing and heart rate variability in Swedish Val30Met ATTR. Amyloid. 2011;18:183–90.
CAS
CrossRef
Google Scholar
Vollert J, Attal N, Baron R, Freynhagen R, Haanpaa M, Hansson P, et al. Quantitative sensory testing using DFNS protocol in Europe: an evaluation of heterogeneity across multiple centers in patients with peripheral neuropathic pain and healthy subjects. Pain. 2016;157:750–8.
CrossRef
Google Scholar
Blankenburg M, Meyer D, Hirschfeld G, Kraemer N, Hechler T, Aksu F, et al. Developmental and sex differences in somatosensory perception – a systematic comparison of 7- versus 14-year-olds using quantitative sensory testing. Pain. 2011;152:2625–31.
CAS
CrossRef
Google Scholar
Haanpää M, Attal N, Backonja M, Baron R, Bennett M, Bouhassira D, et al. NeuPSIG guidelines on neuropathic pain assessment. Pain. 2011;152:14–27.
CrossRef
Google Scholar
Cruccu G, Sommer C, Anand P, Attal N, Baron R, Garcia-Larrea L, et al. EFNS guidelines on neuropathic pain assessment: revised 2009. Eur J Neurol. 2010;17:1010–8.
CAS
CrossRef
Google Scholar
Birklein F, Sommer C. Pain: quantitative sensory testing – a tool for daily practice? Nat Rev Neurol. 2013;9:490–2.
CrossRef
Google Scholar
Stewart JD, Low PA, Fealey RD. Distal small fiber neuropathy: results of tests of sweating and autonomic cardiovascular reflexes. Muscle Nerve. 1992;15:661–5.
CAS
CrossRef
Google Scholar
Lacomis D. Small-fiber neuropathy. Muscle Nerve. 2002;26:173–88.
CrossRef
Google Scholar
Devigili G, Tugnoli V, Penza P, Camozzi F, Lombardi R, Melli G, et al. The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology. Brain. 2008;131:1912–25.
CrossRef
Google Scholar
Üçeyler N, Kafke W, Riediger N, He L, Necula G, Toyka KV, et al. Elevated proinflammatory cytokine expression in affected skin in small fiber neuropathy. Neurology. 2010;74:1806–13.
CrossRef
Google Scholar
Üçeyler N, Zeller D, Kahn AK, Kewenig S, Kittel-Schneider S, Schmid A, et al. Small fibre pathology in patients with fibromyalgia syndrome. Brain. 2013;136:1857–67.
CrossRef
Google Scholar
Serra J, Collado A, Sola R, Antonelli F, Torres X, Salgueiro M, et al. Hyperexcitable C nociceptors in fibromyalgia. Ann Neurol. 2014;75:196–208.
CAS
CrossRef
Google Scholar
Vallbo AB, Olausson H, Wessberg J. Unmyelinated afferents constitute a second system coding tactile stimuli of the human hairy skin. J Neurophysiol. 1999;81:2753–63.
CAS
CrossRef
Google Scholar
Cole J, Bushnell MC, McGlone F, Elam M, Lamarre Y, Vallbo A, et al. Unmyelinated tactile afferents underpin detection of low-force monofilaments. Muscle Nerve. 2006;34:105–7.
CrossRef
Google Scholar
Lauria G, Sghirlanzoni A, Lombardi R, Pareyson D. Epidermal nerve fiber density in sensory ganglionopathies: clinical and neurophysiologic correlations. Muscle Nerve. 2001;24:1034–9.
CAS
CrossRef
Google Scholar
Scherens A, Maier C, Haussleiter IS, Schwenkreis P, Vlckova-Moravcova E, Baron R, et al. Painful or painless lower limb dysesthesias are highly predictive of peripheral neuropathy: comparison of different diagnostic modalities. Eur J Pain. 2009;13:711–8.
CrossRef
Google Scholar
Scott K, Simmons Z, Kothari MJ. A comparison of quantitative sensory testing with skin biopsy in small fiber neuropathy. J Clin Neuromuscul Dis. 2003;4:129–32.
CrossRef
Google Scholar
Magda P, Latov N, Renard MV, Sander HW. Quantitative sensory testing: high sensitivity in small fiber neuropathy with normal NCS/EMG. J Peripher Nerv Syst. 2002;7:225–8.
CrossRef
Google Scholar
Shukla G, Bhatia M, Behari M. Quantitative thermal sensory testing – value of testing for both cold and warm sensation detection in evaluation of small fiber neuropathy. Clin Neurol Neurosurg. 2005;107:486–90.
CrossRef
Google Scholar
Lauria G, Bakkers M, Schmitz C, Lombardi R, Penza P, Devigili G, et al. Intraepidermal nerve fiber density at the distal leg: a worldwide normative reference study. J Peripher Nerv Syst. 2010;15:202–7.
CrossRef
Google Scholar
Vlckova-Moravcova E, Bednarik J, Dusek L, Toyka KV, Sommer C. Diagnostic validity of epidermal nerve fiber densities in painful sensory neuropathies. Muscle Nerve. 2008;37:50–60.
CrossRef
Google Scholar
Rage M, Van Acker N, Knaapen MW, Timmers M, Streffer J, Hermans MP, et al. Asymptomatic small fiber neuropathy in diabetes mellitus: investigations with intraepidermal nerve fiber density, quantitative sensory testing and laser-evoked potentials. J Neurol. 2011;258:1852–64.
CrossRef
Google Scholar
Vollert J, Maier C, Attal N, Bennett D, Bouhassira D, Enax-Krumova E, et al. Stratifying patients with peripheral neuropathic pain based on sensory profiles: algorithm and sample size recommendations. Pain. 2017;158(8):1446–55.
CrossRef
Google Scholar
Üçeyler N, Vollert J, Broll B, Riediger N, Langjahr M, Saffer N, et al. Sensory profiles and skin innervation of patients with painful and painless neuropathies. Pain. 2018;159(9):1867–76.
PubMed
Google Scholar
Schestatsky P, Stefani LC, Sanches PR, Silva Junior DP, Torres IL, Dall-Agnol L, et al. Validation of a Brazilian quantitative sensory testing (QST) device for the diagnosis of small fiber neuropathies. Arq Neuropsiquiatr. 2011;69:943–8.
CrossRef
Google Scholar
Blackmore D, Siddiqi ZA. Pinprick testing in small fiber neuropathy: accuracy and pitfalls. J Clin Neuromuscul Dis. 2016;17:181–6.
CrossRef
Google Scholar
Sveen KA, Karime B, Jorum E, Mellgren SI, Fagerland MW, Monnier VM, et al. Small- and large-fiber neuropathy after 40 years of type 1 diabetes: associations with glycemic control and advanced protein glycation: the Oslo Study. Diabetes Care. 2013;36:3712–7.
CAS
CrossRef
Google Scholar
Vlckova-Moravcova E, Bednarik J, Belobradkova J, Sommer C. Small-fibre involvement in diabetic patients with neuropathic foot pain. Diabet Med. 2008;25:692–9.
CAS
CrossRef
Google Scholar
Kramer HH, Rolke R, Bickel A, Birklein F. Thermal thresholds predict painfulness of diabetic neuropathies. Diabetes Care. 2004;27:2386–91.
CrossRef
Google Scholar
Themistocleous AC, Ramirez JD, Shillo PR, Lees JG, Selvarajah D, Orengo C, et al. The Pain in Neuropathy Study (PiNS): a cross-sectional observational study determining the somatosensory phenotype of painful and painless diabetic neuropathy. Pain. 2016;157:1132–45.
CAS
CrossRef
Google Scholar
Üçeyler N, Ganendiran S, Kramer D, Sommer C. Characterization of pain in Fabry disease. Clin J Pain. 2014;30:915–20.
CrossRef
Google Scholar
Burlina AP, Sims KB, Politei JM, Bennett GJ, Baron R, Sommer C, et al. Early diagnosis of peripheral nervous system involvement in Fabry disease and treatment of neuropathic pain: the report of an expert panel. BMC Neurol. 2011;11:61.
CrossRef
Google Scholar
Schiffmann R, Pastores GM, Lien YH, Castaneda V, Chang P, Martin R, et al. Agalsidase alfa in pediatric patients with Fabry disease: a 6.5-year open-label follow-up study. Orphanet J Rare Dis. 2014;9:169.
CrossRef
Google Scholar
Biegstraaten M, Arngrimsson R, Barbey F, Boks L, Cecchi F, Deegan PB, et al. Recommendations for initiation and cessation of enzyme replacement therapy in patients with Fabry disease: the European Fabry Working Group consensus document. Orphanet J Rare Dis. 2015;10:36.
CrossRef
Google Scholar
Dütsch M, Marthol H, Stemper B, Brys M, Haendl T, Hilz MJ. Small fiber dysfunction predominates in Fabry neuropathy. J Clin Neurophysiol. 2002;19:575–86.
CrossRef
Google Scholar
Üçeyler N, He L, Schonfeld D, Kahn AK, Reiners K, Hilz MJ, et al. Small fibers in Fabry disease: baseline and follow-up data under enzyme replacement therapy. J Peripher Nerv Syst. 2011;16:304–14.
CrossRef
Google Scholar
Tang Z, Chen Z, Tang B, Jiang H. Primary erythromelalgia: a review. Orphanet J Rare Dis. 2015;10:127.
CrossRef
Google Scholar
McDonnell A, Schulman B, Ali Z, Dib-Hajj SD, Brock F, Cobain S, et al. Inherited erythromelalgia due to mutations in SCN9A: natural history, clinical phenotype and somatosensory profile. Brain. 2016;139:1052–65.
CrossRef
Google Scholar
Faber CG, Hoeijmakers JG, Ahn HS, Cheng X, Han C, Choi JS, et al. Gain of function Nanu1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol. 2012;71:26–39.
CAS
CrossRef
Google Scholar
Faber CG, Lauria G, Merkies IS, Cheng X, Han C, Ahn HS, et al. Gain-of-function Nav1.8 mutations in painful neuropathy. Proc Natl Acad Sci U S A. 2012;109:19444–9.
CAS
CrossRef
Google Scholar
Han C, Yang Y, de Greef BT, Hoeijmakers JG, Gerrits MM, Verhamme C, et al. The domain II S4-S5 linker in Nav1.9: a missense mutation enhances activation, impairs fast inactivation, and produces human painful neuropathy. NeuroMolecular Med. 2015;17:158–69.
CAS
CrossRef
Google Scholar
Harrer JU, Uceyler N, Doppler K, Fischer TZ, Dib-Hajj SD, Waxman SG, et al. Neuropathic pain in two-generation twins carrying the sodium channel Nav1.7 functional variant R1150W. Pain. 2014;155:2199–203.
CAS
CrossRef
Google Scholar
Hoitsma E, Marziniak M, Faber CG, Reulen JP, Sommer C, De Baets M, et al. Small fibre neuropathy in sarcoidosis. Lancet. 2002;359:2085–6.
CAS
CrossRef
Google Scholar
Saito H, Yamaguchi T, Adachi Y, Yamashita T, Wakai Y, Saito K, et al. Neurological symptoms of sarcoidosis-induced small fiber neuropathy effectively relieved with high-dose steroid pulse therapy. Intern Med. 2015;54:1281–6.
CrossRef
Google Scholar
van Velzen M, Heij L, Niesters M, Cerami A, Dunne A, Dahan A, et al. ARA 290 for treatment of small fiber neuropathy in sarcoidosis. Expert Opin Investig Drugs. 2014;23:541–50.
CrossRef
Google Scholar
Nolano M, Provitera V, Estraneo A, Selim MM, Caporaso G, Stancanelli A, et al. Sensory deficit in Parkinson’s disease: evidence of a cutaneous denervation. Brain. 2008;131:1903–11.
CrossRef
Google Scholar
Martinez V, Fletcher D, Martin F, Orlikowski D, Sharshar T, Chauvin M, et al. Small fibre impairment predicts neuropathic pain in Guillain-Barre syndrome. Pain. 2010;151:53–60.
CrossRef
Google Scholar
Reimer M, Rempe T, Diedrichs C, Baron R, Gierthmuhlen J. Sensitization of the nociceptive system in complex regional pain syndrome. PLoS One. 2016;11:e0154553.
CrossRef
Google Scholar
Gierthmühlen J, Maier C, Baron R, Tolle T, Treede RD, Birbaumer N, et al. Sensory signs in complex regional pain syndrome and peripheral nerve injury. Pain. 2012;153:765–74.
CrossRef
Google Scholar
Üçeyler N, Eberle T, Rolke R, Birklein F, Sommer C. Differential expression patterns of cytokines in complex regional pain syndrome. Pain. 2007;132:195–205.
CrossRef
Google Scholar
Oaklander AL, Fields HL. Is reflex sympathetic dystrophy/complex regional pain syndrome type I a small-fiber neuropathy? Ann Neurol. 2009;65:629–38.
CrossRef
Google Scholar
Kim DH, Zeldenrust SR, Low PA, Dyck PJ. Quantitative sensation and autonomic test abnormalities in transthyretin amyloidosis polyneuropathy. Muscle Nerve. 2009;40:363–70.
CrossRef
Google Scholar
Heldestad V, Nordh E. Quantified sensory abnormalities in early genetically verified transthyretin amyloid polyneuropathy. Muscle Nerve. 2007;35:189–95.
CAS
CrossRef
Google Scholar
Adams D, Suhr OB, Hund E, Obici L, Tournev I, Campistol JM, et al. First European consensus for diagnosis, management, and treatment of transthyretin familial amyloid polyneuropathy. Curr Opin Neurol. 2016;29(Suppl 1):S14–26.
CAS
CrossRef
Google Scholar
Weis J, Katona I, Muller-Newen G, Sommer C, Necula G, Hendrich C, et al. Small-fiber neuropathy in patients with ALS. Neurology. 2011;76:2024–9.
CAS
CrossRef
Google Scholar
Isak B, Pugdahl K, Karlsson P, Tankisi H, Finnerup NB, Furtula J, et al. Quantitative sensory testing and structural assessment of sensory nerve fibres in amyotrophic lateral sclerosis. J Neurol Sci. 2017;373:329–34.
CrossRef
Google Scholar
Truini A, Biasiotta A, Onesti E, Di Stefano G, Ceccanti M, La Cesa S, et al. Small-fibre neuropathy related to bulbar and spinal-onset in patients with ALS. J Neurol. 2015;262:1014–8.
CAS
CrossRef
Google Scholar
Gröne E, Üçeyler N, Abahji T, Fleckenstein J, Irnich D, Mussack T, et al. Reduced intraepidermal nerve fiber density in patients with chronic ischemic pain in peripheral arterial disease. Pain. 2014;155:1784–92.
CrossRef
Google Scholar